ON THE NUMERICAL SOLUTION
OF DIABATIC QUASI- GEOSTROPHIC
OMEGA EQUATIONS

J. Shukla

1871

Indian Journal Meteorology Geophysics
Volume 22
Pages 35-46



i e S ]

A e -

e

B el

-~

+

Vet Geophys. (1971), 22, 35—

x 3T Joo

551,515 : 551,509,311

On the numerical solution of diabatic quasi-geostrophic

omega equatiofl

s

J. SHUKLA

Institute of Tropical Meteorology, Poona '

(Received 11 February 1970)

ABSTRACT, The quasi.geostrophic omega equation has been numerically solved to get the vertical velocity

dwstpibution in a typical westerly disturhance,

The efocts of sensible heat and latent heat of erndensation are also

awhided.  Three dimensional refasation was performed to get the numegical solution of the omega equation

fot u 4-layer model. The computations were performe

d on HITAC 5020,

The numetically obtaitied vertical velocity field is in good agreement with the obeerved weather pattern associa-

tnl with the micditle latitude large-seale disturbance, 1.0,

meotjon in the tear of the trough.

.. Introduction
The problem of the vertical velocity computation

.+ heen of vital concern to meteorologists, Being

i

]

3

.1 in magnitude but at the same time being
+ portant for weather and weather systems,
_-sally in the study of ageostrophic divergent
«ionand energy transforma tion, many attempts
.o twen miade to bnd an acoutate methed of
.- waputing the vertical velocity. Therefore, in
. Llition to kinematic and adiabatic methods,
“«iav we have sophisticated multilevel dynamical

madels to compute vertical velocity. Subse- -

qent to a classieal paper by Charney (1947),
“.o guasi-geostrophic system of equations have
wen widely used, Although the system was
~volved on the basis of its applicability to large

o systems of middle latitudes, and at present
* e 4 no Tigorous justification for its applicability
-« the tropics, some recent studics (Hawkins
7, Rao 1970, cte) indicate that the vertical

iy obtained from the quasi-geostrophic omega
© wtion is 3 fairly good approximation even in
"o t1opies,

I: the present study, an attempt has been
"o« to solve the .quasi-geostrophic omegs equ3-
“wn numerically, The finite difference form and
St 1-}}1:&?011&1 scheme etc have been elaborately
weserihed.

Diabatie foreing due to Iatent heatand sensible

R .h'-t\'('. been ko ntroduced and the vertieal
Coladiry induced by these dinbatie factors has
i-en coputed.  Tn the present study, frigtional
vty have been negleoted.

gseonding motion in front of the trough and downward

As o test cxperiment, the program for a numeri-
eal solution of the omegs equation has been run
on the data generated by another program for
an analytical pattern, which simulates the features
of a typieal middle latitude westerly disturbance.
The reason for taking o typieal middle latitude

westerly disturbance pattein is that, at present,
wa  haye: suffieient  observotional information

A TN . . e Ve mninbed maamiia
regarding lie siiuciuie ai associnted werbicnl

velocity distribution of such disturbances. The

_vertical velocities obtained are in good agreement

(in magnitude and in spatiel distribution) with
the observed weather pattern associated with
middle latitude large scale disturbances, ‘e,
we find ascending motion in front of the trough
and downward motion in the rear of the trough.

2, Equations governing the model
9.1. Quasi-geostrophic system of equations

Under the usual approximation based on the
scale considerations by Charney (1947), the vorbie
city and thermodynamic energy equations may
be written for frictionless and adiabatic motion
as follows—

at _ o
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The omega equation is derived from these two

“pquations by eliminating the -time dependent

term and by using tlie geostrophic relation. How-
ever, if the time dcpendent term is eliminated by
use of & balance equation, the resulting diagnostio
equation in w willbe a balanced baroelinic omega

equation.

In accordance with the scale theory of Charney
(1947) and energy considerations illustrated by
Lorenz (1960), the adveeting wind (V) is taken
to be the nondivergens geostrophic wind and f
istaken asconstant on the right hand side of (1).
¢ is given by the expression —

{=K-V XV (2.4a)

where K is the unit vector along the vertieal axis,
The constancy of f and g will be discussed later.

Operating equation (1) by 2/ap and equadon (2)

by (1fy) V¥, we get after the substitution,
Vig = { (2.4b)

g‘;g (v L rvn=1 22—“—;— (2%)

7 {at("qﬁ)i—ﬁ"vz frov -5
-}-: V3HSw)=0 (2.6)

whel:e,‘}; the geostrophic stream function is defined
by—
fo VR4 = Vg e

When the time dependent term is eliminated,
we get the following diagnostic equation in w —

Viw 'f'n— -y [fo (¥,. V’?) +

T
+ 73 { V.. (‘%j%)}]
5| et

{3

The above equation was solved numerically by

~ three dimensional relaxation; The details of the

procedure will be discussed in a later section,

2.2, Variation of static stability parame!

Eq. (2+8) has been derived under the assun
that S is & function of o only and does not
with » and . In order to mainfain ene
consisteney, it is necessary that S should he
tion of p ouly (Summer 1950, Wiin-Nielsen
Lorenz 1960 and Saite 1960}, This assun
makes it convenient to solve Eq. (2-8),

2.8. Variation of Coriolis parameter

It may be recalled that in (2.1), fistak
Jo. This condition is imposed to satisty the
traints of energ}' imeriance and conservat:
vorticity., Some additional terms should =
on L.H.8. tosatisfy the constraints iniposed !
invariance of kinetic energy xndd verrivity.
tiken as a variable (ipkmndl_\ . He
itmay be noted that f is taken as ¢ varial
the purpose of computations of absolute vor:
As we are not conceraed in the prognostic &
of the quasi-geostrophic model in this stud:
problem of a variable f does not pose any s
problem here,

-~

3. Q tasi-gaostrophio system of equatlons including ¢
foreing terms

Taking into consideration the nenadi
heating effects, the thermodynamic energy
tion {2.2) may be written as —

R R

ot\ ap Cp.p

where dQ:dt is the nonadiabatic rate of k.
per unit time and upit mass. Followin
procedure given in Section 2, a new diag:
equation may be derived given as—

Ji'_.__.=liJ 1

Y %

Hereafter, we drop the subscript g for geosu
‘motion.

As (3.2) is o linear equation in w, it ¢
resolved into components —-

V%ﬁ—{gz a;’c' = ‘l[i I(¢, m) + ?E
xva-{J(¢, Zi)J (
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P b8 Top S Cp.p dt
. (3:4)
ey, W = up +' w‘ . (3.5)
b yeeof the linearity of (3.2, solutions obtained
P Lving(3-3) and (3. 4) separately moy e added
. . vihe final solution under appropriate boun-

i v conditions.

ardt, 1 the rate of non-adizbetic heating per

S me and unit mass, mey be produced by

.t Lieat of condensation, sensible heat transfer,

. tion and friction. Tn the present study only
st two factors have been considered. Conse-
aly, if 4€ )4t and dQ/dt are the rate of lLeat-
pt Uit time and unit mass by Jatent heat of

¢ ensation and sensible heat supply respectively

i .. have,

dQ 49 das (3.6)

p—

H b —_—
j dt a. o

Thetefore, (3-4) being Jinear may be further

. okt up into the following equations —

1 fﬁ.?i.“l:

.. =w1 4= S apz - S CP'P dt
(3.7)

- - f(f. o% w3 = .—-}- -—R-—— : de
Vex Vg g T8 Cep v ( ‘
(3.8)

slute, @, and @, ore the vertical velocities due
to the latent heat of sondensation and sensible
L1t supply respectively. Consequently,

i T o = owptowl (3.93)
’ and @ = wpt ot e (3.9b)

firee dimensional relaxation will be performed
~purately to golve equations_(3-3), {3-7)and (3'8)
<tal the final @ will be given by the algebraic sum
of wy, @) and w; obtained from equations {3+3),

:3-7) snd (3-8) respeotively.

3.1, Inclusion of the latent heat of condensation

N One of the obstacles-in solving (3-7) is the
patumeterization of dQ/dt in terms of knowsn
ur observable meteorological quantities, Here,
we follow the method adopted by the electronic
computation centre of Japon Met. Agency (1963).

For a saturated atmosphere,

e
at de

NCR BB

where, I is the latent heat of condensation (assu- R

med to be constont) and ¢* is the saturated speci-
fic-humidity. Following Gambo (1963), it may
further be written as,

aQy _ _ 91 _ . 319
%=1 — —oLF* (8.1.2)

where, F* is the condensation rate and is function
of p and T only. The exact mathematical ex-
pression for F* is given as, '

e T’f‘;":"*f“(ea_*—)“[(?ﬁ)T + o
P

A

- é’l’(@zf ]
T P aT)P

(X = B|Cp ~ 0.28)

(3.1.9)

Tin the above expression, subseript p or T’ denote
the differentiation &t p=const. respectively, The
derivation of the expression for I*is given in
Appendix II.

However it is seen, that in (3.1.2), w which
is yet to be computed appears explicitly. - There-
fore w, which is calculated by solving (3-3)
is taken as the first approximation of w, Asa
matter of fact, if s is-also known independently,
(wo — wa) DAY also be taken as @ first
appromimmation for w, Since the formulation
for (s Al iy such that = €0 e found indepen-
dently by solving (3-8), (@ + w,) has been
takenfas the first approsimation of .

Let, w’ = wo +“’2 (3'1'4)
Therefore using (3-1-2) and (3:1-4), (37
may be written as—

LF'R o
Let, Crp s

It is interesting to note that unit of §* (m? se0™2
mb-?) is same as that of 8. Usually, (31} is
written a%

" ’ 2..&201 S* ’
Tray + JBS_ e Va(_s__ w) (3.1.6) |

Saito (1960) has evaluated the approximate
values of S* ut difierent isobaric surfaces for
different Tapges of temperatures, The mathema-
tieal expressions re shown in Appendix II,

o i e P b ¢ v
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Ta=Ts= 1°C Tg—Ta = 10°C
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Fig. 1. Artificlal land and sea distribution for ealsulating
the senstble heat effect

In order that the solution of (3-1-6) mnay conve-
rge. it is always necessary to satisfy the criteria,

S*— S <0 (3.1.7)

. ‘Wherever this criterion is not satisfied, S*
is forced to beequal to 0.8 8 or below. The details
of this criterion for convergence are shown in
Appendix 111

Normally wa dn nat exnect. nmuech preeinitation
to take piace above 100 nb; conswgucitly o is
put equal to zero at or above 400 mb. For the
levels below 400 mb, it is assumed that,

L R
ngL — _wr LF* wr <0

3.9, Inclusion of sensible heat

The role of sensible heat supply has also been
parameterized in the way similar to the one
adopted in the operational d-level quast-geo-
strophic baroclinic model in Japan (1963),

Following Jacobs (1951), Martin (1962) and
Spart (1962), the eddy flux of heat H per unit
time into an air column of unit cross-section _is
computed by the relation,

H = AV(T,—T,) (3.2.1)

where, 4 is a constant, V' is the surface wind
speed, T, is the surface water temperature and

T, is the surface air temperature.” Ttz further

assumed that the heating decreases with the
tho decreasing pressure according to a power law,
Therefore, the rate of heating per unit time and
unpit imnass, at the pressure Jevel p is given hy,

_tjg{_ . "o FAY
LS = v Ta)(;,;»)

k3

p* is surface pressure and A, ¥ are constay
_The constant A has becn given the numeri.,
value,

A= 1,0 X 10-3m soc™! deg™t

Following the sugzestion by Manabe{1932)
rate of heating due to the sensible heat ~ny
decreases rapidly witlt height, ¥ has been tal.
as 2. It mav be easily scen that the orde: -
of magnitude of dQs/dt is comparable to the nr.
of magnitude of AQ,.dt for the normally obser
surface winds. provided the tamperature differe
between sucface and the overlying air Is of -
order of 1 ~ 10°C.

On physicsl grounds, upward motion may
expected if there is sensible heat supply from
ocean surface to the overlving air. but a dov

“ward cutrent may not be obviously expee

it sea surface is colder than the overlving »
Therefore, assuming downward flux of sensi
heat tobe small. tentatively, T, > 1T,

4 = 1.0 X 107*m sec™? deg™?

is taken in this study. This reduction in the va'
of 4 will nat allow eancidarable  Aessond:
molion even if sca stfave Is voidel bhan o
overlving air.

Sensible heat exchange between the aimosph-
and continent has not been considered. For
purpose of the present study, an artite
Jand sea distribution was 1ade (as shown
Fig. 1) and a pre-determined temperature contr.
was imposed between the land-sea interface &
atmosphere-ocean interface,

4. Gmation of ths input data

As mentioned carlier. a typical westerly dist
bance superimposed over the basic zonal we<t-
current of pre-spectfied wind ~hear has been w
to obtain the associated vertieal velocity div
bution by numerical integration of the om
cquation,

If ¢ is the geopotential fivkd correspondins
the basic zonal current and &' ix the geopotet
field for the perturbation. the field ¢, which
heen used for our computation. is given by —-

4=+ o

The values of zonal westerly wind speeds v
have been taken for the present computal”
are shown in Table 1, Temperatures for a ~tan-
atmosphere have been also given for each pres
level. ;



- .- ——

———

DIABATIC QUASI-GEOSTROPHIC OMEGA EQUATION —

TABLE 1

Vertical structure of the model atmosphere taken
for the computiations

. Temperatura Zonal wind
] for standard epecd
Pressure atmosphere
{mb) °A) (kmfhe)
0 200 217-0 130
1 %0 - 2080 L1165
2 100 241+0 160
3 500 252:0 83
4 600 261:2 70
5 700 2685 it}
] 800 27546 40
7 900 2815 25
8 1000 287:0 10

Using the geostrophic relation and the equation
of state, we bave,

¥ R T
2 === 4,2
ap fp 2y (+:2)

Knowing 2d/ap and prescribing the value of T
along the middle of the domain from the above
tabiv, T (g ) can bo found for all the levels,
From T (y,p) the hydrostatic reiation,

- g |
I SR C O (4.3)
-ap P '

may be integrated with the boundary condition
¢ =0 for k= 8. This choice of the boundary
condition is arbitrary. However, any constant

value of ¢ will also give the same o field.

Tﬁerefore, ¢ = — —%1—'- dp (4.4)

Since T (i, p)is known by {4-2) ,g-l: (y,p) may be
caloulated from (4-4).

In order to compute ¢, a sinusoidal disturbance
of wavelength 6300 kin was considered. In order
that there may not be any inflow or outflow from
the northern and southern boundary, the distur-
bance js made to vanish along the northern
and southern boundaries. Therefore, if I is the
width of the computation domain, the analytical
form of a sinusoidal disturbance having a tilt

- p along the vertical is,

9
qs.-.: A sin —}; (w— p) sin %—y {1.5)

whers L is the wavelength of the disturbance and
Aw 1s the amplitude, ,

It may be noticed that pis 8 function of p
only.  has been taken to be half the unit grid
interval d (d = 250 km) for 100 mb, Since the
domain considered for the computationsis (23X 17),
5. ¢, 23 and 17 grid points alongz and y respe-
ctively the value of D is,

D= 16xd = 4000km

Differentiating (4+5) w. T, to  we have,

? 9w A , T
-%% = An 5 €os a (z— p) 80 ¥

By the geostrophic relation, therefore,
, n o .o
fv= Af"T{ cos 5 {z—p) sin By}

Therefore, [ { Vmax) = An (27/L}, becauso the
maximum  possible value of the expression
under curly brackets is one. Specifying, therefore,
the valie Of VU'mes, Am can be evaluated.
In the present computation, ¥'max has been

taken as 5 m sec-3,

Since,
A.m = -{;.'_{_';‘Pﬂ (4:. 6)

Eq. (4:5) may be written a3

,_—L.f.v’m . 2n . kil
g = LI o 2 eepyin 5y D)

Now, since all the variables on R. H. S. have
been specified ¢' may be computed for different
values of z and y The amplitude and wave-
lengths of 4" has boen taken as constant along the
vortical, therefore, (4 7) holds for all the levels.

Thus, adding (4-4) and {1+7), ¢ can be computed.
Since the finite difference forms of these equations
are straightforward, they will not be disoussed.

separately.
The contour pattern of geopotential for the

.300 mb_surface has been shown in Fig. 2. The

vorticity distribution for the corresponding level
is shown in Fig. 3. For cconomy in space, contours
and vorticity patterns for other levels have not

been presented.

5. Finiie difference forms of the differential equations and
numerioal computation _ o S
The finite difference forms of the differential

cquations which appear in  Sections 2 and 3

T '-'-_'39 P
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Fir. 2. Initial he'glt Beld for level kmt {1001 b}

i=1 'z 2% (x-, X t=23
Jel7 . g=Am Sin - (X=A)Sin 4 Y Hage:
////////////////////////// '

d d= 250 km
L= 25xd
_ 0= 1624
' D
N
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<

////////////f///////f///// -

I=1 X 1=23
i= {(a? . =i
.. K=
200 w=0 o
i Y - S
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~ 400 L 2
T g o
K a8 = 3 |
a3 g 600 —0 4 x
X+l . 4 $ o . ]
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& BOO W 5
P~ @ ?
1000 w=o___¢
(O}
Fig. 4

suitable for numerical coumputation, will be

presented in this seotion. The vertically staggared
grid, which has been used for the computation
of vertical derivative has been shown in Fig.
4(b). The number of gnd points in the z and ¥
directions, and the corresponding grid interval
has also heep shown in Fig, Ha) . 1t may be seen
from Tig. 4(b) that, we need to know the infor-
mation rezarding height at the levels k=1, 3, 5

o e —
' L.+ 2o .

- b

m_.___ﬂ_——-—-c_.._.._._____—.,'
________ T ERE T

.
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~
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e
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-—-——
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4.0 /

—
»”
/

r

»

hY
b

[
Ay

-~ -
-
"'-'--_......-—"'.‘
Q

W—agb—_———‘———g—,—g-

-2.0

.f
-0

A~ ]

Fig. 3, Vortielty fiefd for level k=1 (300 mb)
Un-t;: 1078 gec-?

and 7 and knowing @ at k=0 and 8 {as boundar
condition), o at levels k=2, 4 and § may |

avavrprd e *ha thye s b vt
Cﬂux?luﬂd A il three dimensienal remxanon

the relevant equation, Finite difterence for:
suitable for numerical computation of sta
stability parameter S, will be discussed separatel

For a square grid system as shown in Fig. 4t
of grid interval d the expression for Laplacian -
the variable ¢ is,

nd .
vgqs = F (‘ﬁa ‘;‘ 95;’. "3‘ ‘f’:} T ‘f’s_‘ 4‘?50) (3-

For the sake of convenience, hercafter. we sh:
use the notation 32¢ for the expression wl
parentheses, Considering the map factor to i
unity {i.e, wm=1l}, -

Similarly,

Following these notations the finite differem

form of (2+8) which was usad for computation
d*f*

T2 w4+ o |wkes b wkbe — 2ok )

- . X bl( P). - '{"
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4
Flg. 4(c)

~

Decatise,

e 1= L
- Y

As the vorticity is caleulated only for the
poiuts internal to the outer boundary, the value
of vorticity is needed for the points on the outer
houndary to caleulate the Jacobian U7 (n, Z}].
Fhe absolute vorticity for auy point on the bounda-
ry was made equal to the Coriolis parameter ab
that point if there is inflow in the domain across
that point .and was set equal to the absolute
vorticity at the adjacent grid point if there was
aublgse . This criterion was  adopted fo have
partial controi over ulGesizable oy ana G-
flow of vorticity from the computation domain.

.........

Similariy, we also nced the value of Jacobian
[J($s, $2)] at the outer boundary in order to

_ compute its Laplacian at the points internal to

the outer boundary. The values of the Jacobian
at the adjacent points has been taken, in the prese-

~ ut study, as the value of Jacobian ab the outer

boundaty points.

5.2, Computation of static stability parameler

The static stability parameter S, is given by
the expression,

alnd
ap
Trking the logaritbmié differentiation of Poi-

sson’s equation and using the equation of state

and hydrostatic relation, the above cquation may
be written as,

g &4 C 1 3
T Cpop oA
l{.‘:ft-rring tn the vertical erid in Fig. f(b). the ﬁ:ﬁtc
difference form of (3+2+2) may be written as,

. .
§=— 5 6.2.1)

(6.2.2)

-5 -;}k—f(zk \—Zin) | @09 {]
(5.2.3)

where, Ap = pi— Piy = Pk — Pt

In the actual computations, Ap, was taken as
200 mb. As information on Z is available' for
levels k= 1,3, 5and 7 the above formulation will
cnable us to get S at k=3 and 5. From these
two values, S is obtained for the levels k=2,
4 and 6 with suitable weighting functions.

The following interpolation was used —
8y = S5+ (55— 8127
S, = (S5 + 59 [2
8, = S, (600;800)2

(5.2.4)

As discussed in Section 2-2, § has been taken
to be a function of pressure only. For any level,
the value of S is taken to be constant and the
appropriate value for that level is,

N M

Shh
ES) 2,

Cod=ml o i=d

{5.2.5)

S =

where, M and N are respectively the number of
grid points along the 7 and y directions.

5.3, Finite difference form of the omege equation
involving diabatic foreing

Following the procedure adopted in Sec. 51,
the finite difference form for the equations {3+8}
and (3-1+6) may be written as follows —

232 ¢ ’
V2 {wakt + ﬁ}ﬁi(wﬂ)k'ﬁ(wz o 2{ws x-}

. B 1 o dos
=—Tp B % (dt )b (6.3.1)

RLEANE
= V:.’ (—-S—' w)
It may be recalled that—
. .
Cp.p

(5.3.2;

S¥ = F*
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(b} p=4 (600 mb} (¢} k=6 (800 mb)
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Fig. 6 Vertical velocity fleld (sensible heat)

(e

at level (3} k=2 {400 mb) (b) k=4 {600 mb) (¢} k="56{8C0 mb}
Unit: mb/he

CLATENT ICATH

fLATERT WRATT

KEVEL' B #EHT S

u:‘ﬁ“:“’:'-l::-;;‘-n i SeaiéOdant
U i § il
() b (e}

Fig. 7. Vertical veloclty fizld (latent heat) at level (a) k=

2 (450 mh) {b) k=4 (500 mb) {¢) k=6 (800 mb}

Unit : mb/hr

Following Saito (1960) the expressions given below
were used for the computation of 8% for k=2,

4 and 6.

(5%); = {25.0 + (T2 —219.0) X 2.0 } X 10-3
(S%), = { 8.0 4 (T~ 249.0) x 0.81} X 10°°
(S%)g = { 3.0 + (T¢—249.0) X 0.46} x 10°°
- (5.3.9)

Phe forcing duc to latent heat of condensation
was made to vanish at k=2, because condensation

at 200 mb is negligible,

The approximation relations given as {5-3-3)
hold for the temperature vanae of 249° € to 236°C.
From the temperature profile S* was caleulated
ab every grid point.

5.4, Three dimensional relazation

We used the accelerated Liebman relaxatio
technique, with an over-relaxation cocfficies
of 0:3.  The tolerance for the residual
vertical velocity was taken as 0-00001 mb/se

6. Resulls

Figs. 5(a), 6(b) and 5(c) give the vertic
velocity distribution duce to differentiai vortici!
advection, and the Laplacian of thermal adveetio
4 detailed study of these vertical velocity finl
reveal 8 westward displacement  with  heicl
in the centres of ascending (descending) moti
ahead {rear) of the trough. This is becalse of U
fact that the westward tilt was preserthed wh
specifying the vertical structure of the disturbane
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Fig, 8, Vetical velo'city fleld {adiabatic+latent hea'-Lsansible heat) at level (a) £=2 {400 mb)
(b} k==4 (600 mb) and (¢} k=6 (800 mb}
Unit : mb/hr

This is also commonly noticed on synoptie charts.
However, the displacement in the present case
was only by one grid length (250 km) at 200
mb. This is so because the initial disturbance also
had the same tilt,

Figs. 6(a), 6(b}, &{c}and T(a), 7(b). T(¢} provide
the vertical velocity distribution caused by sensible
heat and latent heat of condensation. It may
bo seen that ascending motion due to sensible heat
is found only in these regions where sea surface
is warmer than the overlying air. This factor
may be of importance only in those aans Whern
seq suriace is sutficiently warmer than the over-
Iving air. Such a sitnation may arise in the case
of polar out-break when very cold air spreads
over the warm oceanic waters, The role of latent
heat of condensation, if introduced in the way

being done as in the present study, is to enbance.

the magnitude of the ascending motion in those
regions where ascending motion already exist
due to vorticity advection and the Laplacian of
thermal advection.

Figs. 8(a), 8(b) and 8(c)} give the vertical
velocity distribution due to the combined foreings
on the right hand side of equation (3-3). It may
be recalled that the vertical velocities given in
Tig 8 are the algebraic sum of the vertical veloci-
ties in Figs. 5, 6 and 7.

It is seen that the magnitudes of the vertical
velocities and also the spatial distribution is in

agreement with the observed weather distribution
associated with westerly disturbances of middle
latitude. Ascenvling motion in front of the trough
and descending motion in the rear is readily

- inferred from the given figures,
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Wiin«Nielsen, A,
APPENDIX 1

Variability of f

Reoalling (2:1), we have,

14 v .
—— V- = A‘ ’
s TV V=l (.1

If we integrate for the whole domain, we have,

& fffro- [l

In order that vorticity and kinetic energy are conserved, f should be constant, Howes
it f is taken as variable, some additional terms should be included in order to satisfy the con:

eation oriterion, swl the equation should ba taken the following form—
[
4
(AT

el | , _ piw
5 G+ V. Vp 4+ Ve Vf = o
where, V = Vg + Vx
APPENDIX Il

Caleulation of condensation rate, F*

Recaﬂgzlg (3-1:2), we have,

*
8 —ur (A1
)

-%— may be written as,
' d* _ o* . g -

&= at +V. Vgt tw. ap (A.11

At & constant pressure surface, g* is function of temperature only.

Hence, ag* {3t = (ag*/aT) 3T /2t) (AT
We also know that —

Le
—_ 4. *
Infe=Iné 4 O.T. q

where, subsoript ¢ refers to condensation level. In moist adiabatic ascent, the equivalent poten
temperature is conserved; whence, ’ -

d

rry {ln 6e) = 0

The above expression may be cxpanded {drepping the subseript ¢} to,
L dg*
z (4.1

;] 3 I ..
WA +V. VRO o b= — g,
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On an isobaric surface,
I 4

2 (2 | (2
(8} +V.v)1{19m(3t +}?.V)In1‘ (A.11.5)
Therefore, (A. II. 4) may be written as,
(1+V.V)T+Tw glné L & (AIL.6
at ap Cp dt +11.6)

Making the substitution (A, IL 3); (A. IL 6) may be written as,
3T . 3 L fag* (3T - og*
Zorors(ed wale £ [EE v o))

Therefore, arranging the terms we have,

T ] '
T V. VT — ofa) (&) (3-11-7)
, T 3 L sg* L o2*
Whel'ﬁ, (a} = (»é- —e-l—)- -~ a-; -———-—-—a; ) and (b) = (1 + Up aaqT )

Aaking the substitutions, (4. IL. 3) and (AIL7) in (AIL2) we have,
B Ay VT4V 9T ula) O] 40 L

5t T ¢ p
dg* {q_""___gg"_ w1 1o e |t e T g8 y
il e A A S O i l (4.IL.8)

In the above expression, aq*/2p denotes the variation of q* as the particle goes across the constant
hA‘:uM\lﬁc "drc““:. But, a3 knew that in this pLOGEss, the Lalu Hols l:‘.}:l'_ll':rienc(_'s nok gniv the varistion
of pressure buv aiso the temperaure, vherefore, we may write,

() (o) o
2p (ap r Y\ ) o (A.I1.9)

where, subseript p or T refers to the differentiation for p = constant and 7' = constant.

By differentiating (logarithmically), the equation
' =T (PO )Rl 4
. ?

we have,

T 8 T R T :
T (A.IL.10)

Making the substitutions (A.I1.9) and (A.IL10) in {AIL.8) we have,
¥ - SN0, 5 - (), 63
dé (&) \ap Jr\oT &p 3T Jp\0 2p

- Tal:)_[(%)f + éj» i(aT) ]

Recalling (A.IL1), we have, ' o .

R EV ) e 2 )]
F 1+GP(?T QPT-{TCp P 3T1=
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Raito (1960) has calculated the approximate

of temperature at differont isobaric levels, The spproximate expt

- J. SHUKLA

value of the expression (LRF*[Cp.p) for diflerent ranges

essions are given below -

LRF*
.y = {1704 (T,—211.0) X 0,18 } x 10}
pPo for _
= { 5.0+ (T;—214.0)x 0.6 }x 107 L op4 < T (R)
T2
={2j+wrﬂﬂmx&3}xwﬂj <2
LRF* '
F?_=={%ﬁ+WPJNMX&O}Xm? 1 . *
- F. . or
o 8.0+ (Ty— 219.0) X 0.81 } x 107 b949 < T (R)
' 2
= {3ﬁ+ﬂ}—%&®x&w}xm4'- <286
%
?ﬁ [ 99.0 (T, —286.0) X 1.23 } X 10
» for
= { 28.0 + (Ts — 286.0) X 0.70 } X 1073 . 986 < T ()
< 305

where, T,, T, and T denote the temperature (in Kelvin scale) at 400

respectively.

gmn+@r4%mx&u}xw4'l

(k=1,68
mb, 600 mb and 800 mb

AppENUIX TF]

Convergence criteria for diabatic omega equalion

Recalling (3-1:7), we had,
S§*r -8 <0

as the necessary condition for the convergence
of the omega equation with diabatic foreing.
1t FD denotes the forcing due to vorticity ad-
vection and the Laplacian of thermal advection
and w(} is.the corresponding vertical veloeity,
following (2'8) we have,

fz' 32(01
2,1 Jv 2 . =

Siinilnrly following (3:1+6), we have,

Vit 4 %ﬁ.%‘g:FD;rvz ( _’%t ol )
(A.111.2)

(whero, w}, w?, ® ete refer to omege with different

forcing). A

Qubtracting (A,111.1) from (A.TI1.2), we have,

(A.I1L.1)

Vit —ot + I o= vi(5)

Therefore, approximating the above equations,

we have,
S*
GIJ2 —w! -:S— w!

g *
e (1 + _‘_z_) fwt (A1)

S*

Similarly, e?—w? = 5 w?

Substituting (A, II1.3), we have,

. 8% S*
Wl e— g = e Wl
@ S(l' S)w

S

Therefors, in general we have,

S* Sk \2 %\ n=1;
wh— o™l = "' -S—'-;-(-?S—-) TT(%) );w‘

Thereforo, it may be inferred that in order that
solution may converge, L.e.. e s

oM — o < E

where, E is some préspecified tolerance limit.
it is necessary to satisfy the condition given
(3.1.7). In actunl wumerical computation, when:

TRt dly

ever this criterin i not satisficd, it 13 artier
imposed in order to make the solution converg’



