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ABSTRACT

A simple model containing gravity waves of phase speed C and a basic current U is used to test the
hypothesis that in a nested grid system of different mesh sizes a better computation on the fine grid results
if the outer, coarse-grid forecast is not made independently of the limited-area, fine-grid forecast but in-
teracts with the fine grid throughout the integration. This hypothesis, which is based on an appeal to the
characteristics of the differential equation, is verified by the tests, especially when C is less than U. A two-
step Lax-Wendroff scheme with the staggered arrangement of variables suggested by Eliassen is used in

both grids.

1. Introduction

The need to have a finer grid-point resolution in a
limited area of a numerical forecast is a matter of con-
siderable practical importance, since many of the most
important weather-producing phenomena (hurricanes,
squall lines) occur on a scale small enough that their
adequate resolution requires a grid-point mesh which
is too fine to be used over the entire forecast region
(which may extend over the complete globe). On the
other hand, these phenomena are not isolated from
their surroundings and their evolution, therefore, cannot
be computed independently of the flow patterns of
larger scale in which they are imbedded.

There appear to be two basic strategies. In one, the
complete large-scale prediction is first made on a coarse
grid, completely independent of the fine-grid computa-
tion. Lateral boundary values for the fine-mesh fore-
cast are then obtained as needed from a “history tape”
of the coarse-mesh forecast (Hill, 1968; Wang and
Halpern, 1970). We will refer to this as “one-way”
interaction, or “strategy one.” In the other strategy,
the two forecasts are made simultaneously, i.e., the
computation in the outer coarse mesh uses information
predicted by the interior fine mesh. We will refer to
this as ‘“‘two-way” interaction or “strategy two.”
Birchfield (1960) followed this procedure in a non-
divergent barotropic model and Koss (1971) and
Ookochi (1972) have done so for a model based on the
shallow-water equations. In the following section a
brief argument is presented which favors the hypothesis
that in a nested grid system of different mesh sizes a
better computation on the fine grid results if the outer,
coarse-grid forecast is not made independently of the
limited-area, fine-grid forecast but interacts with the

fine grid throughout the integration. This hypothesis
is based on an appeal to the characteristics of the
differential equation. In the remaining parts of the
paper, the results of numerical integrations performed
to test the aforesaid hypothesis are presented. This
investigation was originally stimulated by receipt of a
preprint of the paper by Harrison and Elsberry (1972)
in which the second strategy is followed.

2. An argument based on an appeal to
characteristics

Let us consider the simple problem of gravity waves
on a uniform basic current U. (For simplicity we take
U20.) To the extent we are permitted to linearize the
meteorological equations, separate out the vertical de-
pendence, and ignore the Coriolis force, heating and
friction, the partial differential equations are

)

The speed C can assume a series of values, each as-
sociated with a different vertical wavenumber. Benwell
and Bretherton (1968), for example, report values of
286, 111, 43.5, 26 and 16 m sec™ for the five largest
values of C for a particular 10-level hydrostatic baro-
clinic model. The largest value of C for a numerical
hydrostatic model with many levels is expected to
approach the “Lamb wave” speed, which is known
from observations and theory to be about 320 m sec™'.
Smaller values of C are approximately equal to NL./
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(2m), when N is the buoyancy frequency and L, the
vertical wavelength. The situation most commonly con-
sidered by meteorologists, however, is only that in which
C>U (e.g., Charney, 1962, p. 133). This occurs in
barotropic versions of the hydrostatic system of equa-
tions when the mean value ¢ of the geopotential is
chosen to correspond to that at the S00-mb level:
C?=¢=~gX6 km= (246 m sec™))2,
The general solution of Egs. (1) is

1
%=E[f(£)+g(n)] ’ @

o= f(£)—g(n)

in which the characteristic coordinates £ and % are
given by

t=x—(U4C),
n=x— (U—=C)t.

In other words, the combination Cz-¢ is a function
only of x— (U4C)t and is constant along any line of

slope

dx

<—> =U+C €))
at/y

in the x,f plane. The combination of Cux—¢ is a func-
tion only of x— (U —C){ and is therefore constant along

any line of slope
dx
(——) =U-C. 4)
at/,

When U> C both sets of characteristics have a positive
slope, while U/ :"C results in oppositely signed slopes.

Suppose we consider now a region 0<x<L in the .

x,t plane as corresponding to a fine-mesh region im-
bedded in a surrounding region in which a coarse mesh is
used for prediction. The true continuous solution in
0<x< L must satisfy (2). In the case C> U, we see that
at the inflow point =0, the combination Cz#—¢ is de-
termined by previous conditions.in 0<x<L while at
the outflow point x=L the combination Cu-¢ is de-
termined by previous conditions in 0<x<L. At both
boundaries one additional independent piece of infor-
mation is needed beyond that supplied by 0 <« < L. The
situation C< U is different, however. In this case both
characteristics have positive slope, leading to the con-
clusion that at the outflow point x= L the solution for
both u and ¢ is completely determined by antecedent
conditions in 0 <x < L, whereas at the inflow point x=0
both u and ¢ are completely determined by antecedent
conditions in the upstream region (x <0). .

In actual practice, the method of obtaining boundary
grid-point values of variables at x=L for a fine grid
located in 0<x <L from a surrounding coarse mesh is
not likely to involve logical instructions which examine
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(for example) the sign of U—C, especially in a three-
dimensional space grid. In particular, the same grid-
point values of variables would be sought from the
coarse grid in the cases U>C as in U <C. Yet the
characteristic argument given above for the continuous
equations suggests that at x=L all of the information
obtained from the coarse mesh should really have come
completely from the fine-mesh region itself if U>C.
Similarly, at =0, the characteristic argument suggests
that only some of the information obtained from the
coarse mesh should have come from the coarse mesh
region x<<0 when U< C. It appeared reasonable to us
that the “two-way” interaction procedure of meshing,
which allows the coarse-mesh, values near the internal
boundary to be influenced by the fine-mesh computa-
tions, might give a more faithful reproduction of the
proper transmission of information into and out of the
fine mesh than would the one-way interaction. The
reasoning is only intuitive, but readily subject to
testing.

3. Numerical tests

The following version of the shallow-water equations
was used:

du ¢ 1

— = fy——

dt f ox

dv d¢

—=—fu——+FY }, (5)
dt dy (

de du  dv

)

dt dx dy/ J

where fis a constant Coriolis parameter, and ¥ repre-
sents a fictitious constant applied force which serves to
geostrophically balance a steady mean current U:

Y={U, (6)

without requiring a mean northward gradient of ¢. In
this way ¢, # and v can all be treated as periodic in
both x and v, thereby avoiding special lateral boundary
conditions which might introduce irregularities into the
numerical results and confuse the meshing aspect of
the tests.

The equations were solved with a two-step, Lax-
Wendroff scheme (see Appendix) based on the time-
and space-staggered lattice suggested by Eliassen
(1956; see also Phillips, 1960). This scheme is well-
behaved computationally and does not require addi-
tional “smoothing” or periodic adjustments to avoid
computational instability and “grid separation.” The
outer (coarse) mesh covered a 1200 kmX1200 km
square region in which grid-point values were located
50 km apart. The inner (fine) mesh was located in the
center of this area and covered a 600 kmX600 km
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region in which grid-point values were located 25 km
apart (Fig. 1). Cyclic boundary conditions were applied
at the outer edges of the coarse mesh. Integration on
the coarse mesh for one complete time step of 9 min
is accompanied by calculation on the fine mesh for
two complete time steps of 4.5 min each. At the end of
each 9-min cycle, values at or near the common bound-
aries of the two meshes were interpolated as needed
from the other mesh. This interpolation was performed
by fitting the polynomial a+bx~-cy-+dyx to four sur-
rounding points, or in some cases, the polynomial
a+bx or a+cy to two neighboring points in the stag-
gered array.

Six sets of initial data were used. In each set, three
12-br calculations were made, consisting of: (0) a
control forecast on which a single fine mesh covered the
entire 1200 kmX 1200 km region; (I) a one-way inter-
action in which the coarse grid covered the entire area,
and its forecast was made independently of the fine
grid but provided interpolated values every 9 min for
the two outermost rows and columns of the fine grid;
and (IT) a “two-way” interaction in which computa-
tions on the central part of the coarse grid were omitted,
with interior boundary values being obtained by inter-
polation from the fine mesh every 9 min and outer
boundary values for the fine mesh again being inter-
polated at those times from the coarse mesh as in (I).
The overlap between the two meshes for the two-way
interaction is illustrated in Fig. 2. This overlap was
designed to be as small as possible without requiring
interpolation between values which had themselves
been interpolated. This approach is similar to one of the
computationally stable schemes tested by Ciment
(1972) for the linear advection equation.

The initial data were defined by using simple x- and
{-dependent linear perturbation solutions of (5) on the
basic state u=U, v=0, ¢=C?*=constant. These are
given by three waves with the phase ¢ =kx—wt:

w=kU
;}?Zg cosy ) 0

V' = —ke f~1 siny

Geostrophic wave:

Gravity waves:

w=RU=E(f--EC2H
¢’ =¢ cosy
(kU
U =————¢ cosy L (8)
kC?
T
1 =——¢ siny
kC? J

All of the data were based on L=2r%"1=600 km,
C=20 m sec™’, f=10~* sec™! and $=20 m? sec>. The
six sets of initial data were defined by using the above
formulas with =0 for the three waves, once with
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Fic. 1. Relative location of coarse and fine mesh over southwest
quadrant of the whole area. (Due to symmetry, other quadrants
are mere reflections of this.) The ¢-field is physically located at the
grid points defined by the intersection of perpendicular lines and
other variables are located with respect to ¢, in the way described
in the Appendix. Capital and small letters refer to coarse- and
fine-grid indices, respectively.

U=10 m sec™? and once with U=3) m sec™!:
u(t=0)=U-+u'(t=0)
9(t=0)=04+v"(t=0) ;. 9
¢ (1=0)=C*+¢'(t=0)

The actual integration used the two-dimensional non-
linear equations (3), so the sinusoidal initial data be-
came deformed with time, especially for some of the
gravity wave cases. The two-dimensional meshed-grid
structures also created some artificial y-dependence in
the solution (the continuous solution theoretically re-
maining independent of y).

Integrations were performed only up to 12 hr be-
cause the purpose was not to examine the usefulness
of meshing a fine and a coarse grid but simply to
compare the two strategies.

Table 1 shows the root-mean-square errors at 12 hr
over the entire 600 km X600 km fine mesh of the one-
way (I) and two-way (IT) forecasts, in which the con-
trol forecast (0) on a uniform fine mesh defined earlier
is taken as the correct solution. (The errors for # and v
are omitted in the geostrophic and gravity waves, re-
spectively, because of their small amplitude.) The ¢
errors are largest in the positive gravity waves, where
in 12 hr the wave has moved eastward about 1300 km
for U=10 m sec™ and 2200 km for U=30 m sec™},
both distances being considerably farther than the 600
km width of the fine mesh. The important poeint for
our present purpose however is that in all cases the
error is smaller for two-way (II) than for the one-way
(I) interaction. There is also a tendency for the im-
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T16. 2. Cross section along the x-axis through the fine-mesh region showing the rela-
tive position of variables on the coarse mesh (upper) and fine mesh (lower) at full time
steps of the two-step Lax-Wendroff procedure. (In the staggered Eliassen arrangement,
values of u are actually displaced northward A/2 from the ¢-points.) Indices I and i
apply to the coarse and fine meshes. Heavy doss denote the extreme points of both grids
in strategy II, and parentheses denote values obtained by interpolation from the other
grid. In strategy I the coarse mesh extended completely across the central region with
no values obtained on it by interpolation from the fine mesh.

provement in going from one-way to two-way interac-
tion to be most marked when U=230 m sec™, greater
than the 20 m sec™ value for C. (The single exception
to this is the ¢ error for the geostrophic wave.)

An indication of the spatial character of the error is
given in Figs. 3~5, where a normalized expression for
the variable part of the potential vorticity

/j<f+; f) K
Neo ¢

is shown for the geostrophic wave case, and the diver-
gence (du/dx)—+ (dv/dy) is shown for the two gravity
wave cases. These were selected as more sensitive indi-
cators than #,» and ¢. The “correct” forecast is shown
together with the results of strategy one and strategy
two. In all figures the curves refer to the quantities at
12 hr along the x-axis passing through the center of the
fine-mesh grid. (The region shown does not include the
two extreme points at each end where values come
from interpolations.) Although there are often appreci-

ou

- ox ay’

n

able differences between the control computation (C)
and both (I) and (II), the (II) results are almost in-
variably nearer to (0) than those of (I), and are
smoother. ‘

The results of these numerical tests seem to indicate
that for the integrations using nested grid systems,
two-way interaction is more favorable than one-way
interaction. One should, however, be careful about the
stability of the finite-difference formulation of predic-
tion equations (Ciment, 1972) so that the excitation
of computational modes and nonlinear instabilities at
the discontinuity in grid sizes may be reduced. The
small-scale “wiggles” seem to appear near the boundary
across which the correct wave pattern is leaving the
fine mesh and moving into the coarse mesh. Values of
the displacement speed of the patterns computed from
grid-point values of ¢ show not only the expected
improvement from an all coarse to an all fine mesh,
but an improvement on the fine mesh in going from
one-way to gtwo-way interaction. For example, the
geostrophic wave with U=30 m sec™ gave values of

TasLE 1. Root-mean-square error (RMSE) for the six types of initial data, evaluated over the entire fine-mesh region. Positive and
negative gravity waves correspond to the corresponding sign in the expression (8) for w. The last three columns are the ratio in percent
of the strategy II error to the strategy I error (see text for explanation).

Initial data RMSE Percentage error ratio

Disturbance U 2% v ¢ /) -
wave (m sec™?) Strategy (m sec™1) (m sec™) (m? sec™?) u ]

Geostrophic 10 I 0.292 1.809 95 81
Geostrophic 10 I 0.278 1.472
Geostrophic 30 I 0.881 5.427 38 87
Geostrophic 30 11 0.777 4.743
+ Gravity 10 I 0.305 5.869 9 97
+ Gravity 10 I 0.293 5.697
+ Gravity 30 I 0.370 7.199 9 38
-+ Gravity 30 I 0.329 6.360
— Gravity 10 I 0.127 2.148 08 08
— Gravity 10 11 0.124 2.097
— Gravity 30 1 0.099 1.913 88 86
— Gravity 30 II 0.088 1.644
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28.7, 28.8, 29.1 and 29.95 m sec! for displacement
speeds on the all-coarse, one-way interaction, two-way
interaction and all-fine grids, respectively.

The relative performance of the Lax-Wendroff scheme
(L.W.) and a leap-frog (L.F.) finite-difference scheme
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was tested by integrating the one-dimensional version
of Egs. (5) using the six sets of initial data described
in Section 3. In each set, four 48-hr calculations were
made, consisting of: (i) a control forecast with L.W.
in which a single fine mesh (Ax=25 km, A/=3 min)

Vorticity

Potentiol

Geostrophic Wave

{g) U =10 m sec”!

N>
I
3

Vorticity

Potential

Geostrophic

Wave
(b U =30 m sec!

~j>

=25km —_0

—

-—-1I

F1e. 3. Distribution of the variable part of the potential vorticity in the geostrophic wave
case: (a) U=10 m sec™!, (b) U=230 m sec™,
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F16. 4. Distribution of horizontal divergence (107¢ sec™?) for the positive gravity wave:
(a) U=10 m sec?, (b) U=30 m sec™™.

covered the whole region, (ii) a “two-way’’ interaction
forecast with L.W. in which Ax=50 km and A:=10
min for the coarse mesh, (iii) a control forecast with
L.F. in which a single fine mesh (Ax=20 km, Ar=4.5
min) covered the whole region, and (iv) a “two-way”
interaction forecast with L.F. in which Ax=40 km,
Ar=9.0 min for the coarse mesh. (Different values of

4Ax and Af were chosen for the two schemes in order to
equalize the computational arithmetic.) The L.W.
calculations were done on a staggered grid (described
in Section 3) and the L.F. calculations were done on
a regular grid. Root-mean-square errors in the potential
vorticity for the geostrophic wave and the divergence
for the gravity waves were calculated over the fine
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Fic. 5. Distribution of horizontal divergence (107° sec™) for the negative gravity wave: (a) U=10 m
sec™y (b) U=30 m sec™.

mesh area between (i) and (ii) for L.W. and between
(iii) and (iv) for L.F., respectively. It was found that
for the 12-hr forecasts the errors defined in this way
were generally more for the L.W. compared to the L.F.
calculations, but for the 24-hr forecasts the errors for
the L.F. calculations were more than for the L.W.

calculations and this was even more true for the 48-hr
forecasts.
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APPENDIX
Finite-Difference Equations

The time- and space-staggered lattice used here is the
same as the one given earlier by Phillips (1960). The
finite-difference expressions corresponding to the con-
tinuous equations (5) of the text are given below. The
variables #;; and v;; are located A/2 to the north and
east of ¢;;, respectively, with the prime variables being
valid at time (n+43)Af; ¢’ is displaced A/2 to the
east and A/2 to the north of ¢;;; and v';; and «',; are
situated in the locations of #;; and v;;. [The primes
here are different than in the initial data definitions
of (9).] The following three full-time step equations

Uijn1— Uijn

g
=—0(¢'i;—¢"i-1)) —;[(u’ij+u’i_1j) (' i—w'i-15) ]
g
—;[(74'1‘;‘+1+u'i~1f+1) (0t 1= i1jrr) N 35
g
—57)/1';'[%’ 1= o i —o o1y,

Vijn+1— Vijn

g
=—0o(¢'ij—¢"ij-1) —;[(?'fﬁ‘v'ﬁ—l) (@'i—2"i-1) ]
g
"/‘L[(W'iﬂj-i‘vliﬂf—l) (”'i+lj*1"i+ 1;'—1)]—)\“/1'1'
g
- E%,ij[vli-f-lj— U,ij_"'vl{-{—l]'—l +7)’1"j—1]+ VAL

¢i]'n+1_¢ifn

a
= —5[%/ i@ i 1i-1) =1t i1, i+ 9 im1j-1) ]

g
—E[v’ﬁ(¢'ﬁ+¢lf—u) — 0 551(¢ i1t im1-1) ],

are computed using the half-time step variables #’,
v/,¢" which have previously been computed from the
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ecuations

, T A
iy =u*ijn _‘2‘(¢i+1j—¢ij)n+‘2‘7)ijm

o A Ve
Vij=0* i — i1 i) ——siin AL
2 2 2

I
¢,ij=¢’*iin_g[(¢ij+¢i+~1j+¢ij+l+¢i+lj+l)n '
X (tip1;— i vi01—055) 0 ).

In these equations o=Af{(A)™Y, A= fAt, where Af and
A=Ax=Ay are the time step and grid interval, respec-
tively, such that x=1Ax, y=jAy, t=nAt. Asterisks
denote the values of %, v, ¢ at {=nAt at the point up-
stream the distance (—#Af/2, —5At/2) from the point
corresponding to the location of #',%'¢’ at the half-
time step. Overbars represent averages of the nearest
surrounding values of # and v. Values of #*, v* or ¢*
are obtained by interpolation with the polynomial
a-+bx~+cy—+dxy fitted to the four surrounding points of
u, v or ¢, respectively.
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