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ABSTRACT

An iterative scheme is presented to compute streamfunction and velocity potential from the observed
winds. From the computed fields of streamfunction and velocity potential, the wind field is reconstructed
and the reconstructed wind field is compared with the observed wind field. Such comparisons are made for
the earlier methods also. The results of intercomparison among all the methods show that the root-mean-
square vector error between the observed and the reconstructed total wind is minimum in the present

method.

1. Introduction

It is now largely accepted that in low latitudes the
flow patterns depicted by winds are more reliable than
those deduced from contour analysis (Palmer, 1952;
LaSeur, 1960; Yanai and Nitta, 1967). It therefore
seems desirable to explore the possibility of using wind
information for wvarious diagnostic and prognostic
studies pertaining to the tropical weather systems. The
present study is one such attempt. Its chief aim is to
resolve the observed wind field into non-divergent
streamfunction and irrotational velocity potential.
The streamfunction derived from the wind field may be
used as input to prognostic models and also for diag-
nostic computations of the geopotential field by solving
the reverse balance equation.

The basic approach to the problem of computation
of streamfunction ¢ and velocity potential x may be
briefly stated as follows:

According to the Helmholtz theorem, the horizontal
wind vector V can be separated into solenoidal and ir-
rotational components as follows:

V=V, +V,=kXVy+Vyx. (1.1)
The vertical component of the curl of Eq. (1.1) gives
k-vXV=vVy=¢ (1.2)

where ¢ is the vertical component of the relative

vorticity. The divergence of Eq. (1.1) gives
v-V=v=D (1.3)

where D is divergence.

! Present affiliation: Geophysical Fluid Dynamics Program,
Princeton University, U. S. A.

Vorticity ¢ and divergence D are calculated from the
observed wind analysis and the following Poisson type
equations are solved for obtaining ¢ and x respectively

Vi ={
Vix=D.

(1.4)
(1.5)

The above equations (1.4) and (1.5) are sufficient to
gety and x for an infinite domain. However, the problem
of finding ¢ and x for a restricted region reduces to
that of specifying suitable boundary conditions. It was
pointed out by Miyakoda (1960a) that the distributions
of ¢ and x have no physical significance of their own
and that it is only the gradients of ¢ and x constituting
the wind components which have significance.

Generally, the types of boundary conditions that are
used for the solution of Poisson equations (Morse and
Feshback, 1953) are either Dirichlet type or Neumann
type or mixed type. In meteorological problems,
however, no information about ¢ or x is available at
the boundaries of the computational domain and there-
fore various means of satisfying the following boundary
conditions are considered. In

W Ix
nV=V,= ——+— (1.6)
ds on
W ax
$:V=V,=—+—, 1.7
on Js

#n is distance on the earth normal to the boundary in-
creasing outward and S is distance on the earth along
the boundary positive in the counter-clockwise sense.
The various attempts which have been made to com-
pute ¢ and x correspond to various degrees of approxi-
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mations which are introduced to satisfy (1.6) and (1.7)
at the boundary. These are reviewed in the next section.
It may, however, be pointed out that the previous
studies do not give any comprehensive discussion about
the criteria for determining the goodness of the methods
of specifying the boundary condition and computing
the streamfunction. Hawkins and Rosenthal (1965)
have used the criterion of root-mean-square vector error
(r.m.s.v.e.) between the observed wind and the recon-
structed wind. On the other hand, Sangster (1960)
and Yanai and Nitta (1967) have stated that the bound-
ary condition should be so chosen as to maximize
the portion of kinetic energy (K.E.) carried by V, and

to minimize that of V,. Although this criterion seems

to be arbitrary, it is simple to show that the minimum
rm.s.v.e. and maximum K.E. for the reconstructed
~wind field correspond to each other provided that the
correlation between the observed wind and the error
between the observed and the recomputed wind is
negligible.

In the present study, a new method of specifying
the boundary condition is suggested and ¢ and x are
computed using this method. From the computed
fields of ¥ and x, the wind field is reconstructed and the
r.m.s.v.e. and the percentage of K.E. are computed. The
results of these computations are compared with those
of earlier methods and it is found that the r.m.s.v.e.
between the observed and the reconstructed total wind
is minimum in the present method.

2. Review of the earlier methods

Phillips (1958) made use of Eq. (1.6) in modified form
to compute the boundary values of . In this computa-
tion the mean value of the normal velocity V, for all
the points along the boundary was subtracted from the
observed value of V, at every point on the boundary
and the boundary value of ¢ was obtained by integrat-
ing the equation

d
—f: _(VI:_'Vn)

V.= f Vauds / < f ds).

In order to integrate the above equation along the
boundary, one of the corner points is arbitrarily assigned
the value of =0 and the above equation is trapezoi-
dally integrated to get ¥ at all points of the boundary.
Eq. (1.4) is then solved to get y for the whole region.

It may be remarked that the above method of modi-
fying the boundary values of V, reduces the mean
.divergence over the area enclosed by the boundary
curve to zero. This method has been further used by
Rosenthal (1963), Yanai and Nitta (1967), and
Krishnamurti (1968). It was, however, shown by
Hawkins and Rosenthal (1965) that this method is

where
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not satisfactory and causes large departures between
the original and the reconstructed wind fields. Hereafter
this method will be referred to as Method II. Solution
of (1.4) with boundary value of ¢ as zero, as used by
Tangri (1966), will be referred to as Method I.

Brown and Neilon (1961) and Bedient and Veder-
man (1964) have used the method suggested by Phillips
(1958) in a modified form. They do not subtract the
mean value ¥, from the observed value of V, at every
point on the boundary but they integrate the equation

oy
ds -

using the observed value of V, along the boundary.
Since the integrated divergence over the whole area
is not necessarily zero, the starting point value and the
the end point value of ¥ (two values at the same point)
are found to be different. This difference is distributed
uniformly among all the points of the boundary. It
may be noted, therefore, that in this method the mean
divergence over the area is not reduced to zero but is
always having a finite value distributed uniformly along
the boundary. This method will be hereafter referred to
as Method III.

Sangster (1960) gave a detailed discussion of the
means of specifying the boundary values of ¢ and
brought out the necessity of considering ¢ and x both,
so as to satisfy (1.6) and (1.7) at the boundary. The
method finally adopted by Sangster for obtaining the
boundary value of ¢ based on the above considerations
may be summarized as follows:

i) Obtain x by solving
V=D (x=0 on the boundary).

ii) Knowing the x values, evaluate dx/dn at the
boundary points and integrate the following
equation along the boundary

oY dIx

- n

as n

i) Knowing the values at the boundary, obtain ¢
field by solving V& =¢.

This method will be referred to as Method IV in the
present study.

Hawkins and Rosenthal (1965) have made the compu-
tations of ¥ and x using various versions of Dirichlet
and Neumann boundary conditions following the sug-
gestions by earlier workers. They have also computed
the r.m.s.v.e. between the original wind and the
reconstructed wind obtained by the different methods.
These authors have concluded that keeping in view the
machine time needed to perform the computations, the
method suggested by Sangster (1960) is the most useful
of the methods tested by them.
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SCHEME (I)

Ty =%

v = o }—> P =gz Py > y =K > X
s

SCHEME (II)

< X=D

A }'x> to—> ¥ = Ae—> N> Py — Y --omeme
B

Fic. 1. Schematic representation of the iteration schemes (I)

and (II). The meanings of the symbols and the arrows are as
follows:

Y = xp means, to obtain the values of xp from known values
of Y by integration of dy/ds=V,—dy/dn along the
boundary.

X = ¢ means, to obtain the values of ¥ 5 from known values
of x by integration of d¢/ds=—V,-+dx/dn along the
boundary.

Yp —y¢  means, to obtain ¢ values by relaxing V¥ =¢{ with
given ¢ p.

xB — x Ineans, to obtain x values by relaxing Vx?=D with
given xp.

3. The present method

The method suggested in the present study is es-
sentially an extension of the Sangster method. In
Sangster’s method it is intended to satisfy the equation,

W ax
—= —V,+—, at the boundary
ds n

and
Viy=¢, in the interior region.

Since both these equations are derived directly from
Eq. (1.1), there is no approximation introduced in
this procedure. Evaluation of dx/dn, however, requires
knowledge of the distribution of x, which is obtained in
Sangster’s method by solving the equation
V=D, with x=0 at the boundary.

This choice of boundary condition for x is arbitrary and
it introduces arbitrariness in the computation of x
which is further used for computation of y. In the
present method, it is proposed to consider this limita-
tion as the first approximation only and just as ¢ is
obtained at the boundary by integrating equation (1.6),
similarly x at the boundary may also be obtained by
integrating equation (1.7) along the boundary using
the previously obtained values of ¥ to evaluate dy/dn.
It may be reasonable to expect that x values at the
boundary obtained by integrating (1.7) may be more
realistic than the earlier assumption of x=0 at the
boundary and therefore a more realistic x field may be
obtained by relaxing the equation (1.5) with the
boundary values of X obtained in the above-mentioned
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way. The new value may be used then to evaluate
dx/0n in Eq. 16 which may be integrated again to
get’new ¥/ values at the boundary. These new ¢ values
at theyboundary may be used for solving the equa-
tion (1.4) to get a new y distribution. These new ¥
values may be further used in the way described
abovejtogget new x values and thus series of iterations
may be performed to get values of ¢ and x. This
iteration scheme, in a general form, may be sche-
matically represented as shown in Fig. 1. Schemes I °
and II correspond to starting the iteration with bound-
ary values ¥p=0 and xp=0 respectively, where the
suffix B denotes boundary. The results of computation
with Scheme I as well as a combination of Schemes I
and II showed large r.m.s.v.e. between the observed
and reconstructed wind fields. Scheme II gave the best
results. Hence Scheme II was adopted and extended in
the present study as shown schematically in Fig. 2.
Here, the symbols and notations have the same mean-
ings as in Fig. 1 but in the iterative procedure the num-
bers 1, 2, 3, . . ., m correspond to the different com-
binations of ¥ and x at different stages of iteration.

It may be seen that m=1 corresponds to the method
suggested by Sangster (1960). An attempt is made in
the present study to extend the iteration further and
compare the results at successive stages of iteration
so as to find, if possible, a value of m for which the
ram.s.v.e. between the observed wind and the recon-
structed total wind will be the minimum. As will be
shown in subsequent sections, this criterion is met for
a value of m=4. Hence the present method will be
described as Method IV (m=4), while that of Sangster
(1960) will be referred to as Method IV (m=1).

4. Computations and results
a. Computational scheme

Centered space differencing is adopted for calculation
of the finite-difference analogs of vorticity and diver-

_ gence. The finite-difference form of the Laplacian which

is used in the present study is the nine-point Laplacian
suggested by Miyakoda (1960b). This form for Lapla-

2
SOLUTION OF ¥%=D WITH X;o GIVES X

THEN THE ITERATION STARTS AS FOLLOWS.

L MR R e e Bt R TR

Ve V.

| ~— STAGE — 2 3

F16. 2. Schematic representation of ¢ and y combinations at
different stages of iteration. Symbols have the same meanings
as those in Fig. 1.
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F16. 3. Arrangement and numbering of points in
a horizontal finite difference grid.

cian ¢ is as follows:
VA= 2+ Vi +-XV¥)/3, (4.1)

where

IR 78 Zan Zan T
- a*
R a2t 2

Vi )
2d?

where d is the grid-length and the suffixes refer to points
shown in Fig. 3.

Egs. (1.4) and (1.5) are solved using the above
finite-difference scheme and the accelerated Liebmann
relaxation technique. The most appropriate value of the
over-relaxation co-efficient was determined by experi-

ment. Fig. 4; which gives the results of this experiment, |

shows that the convergence is fastest for an over-
relaxation coefficient of 0.7. This value is comparable
with that found earlier by Miyakoda (1962).

For evaluation of ¢ at the boundary by using Eq.
(1.6) the x-field is first determined by solving the
Poisson equation, V*x =D, with x =0 at the boundary.
From the x field thus obtained, dx/dn at the boundary
is evaluated by using the formula

GGG
/o \on/y \on/y
where the subscript O refers to the boundary and sub-

scripts 1, 2, and 3 refer to the points which are one, two,
and three grid-lengths interior to the boundary re-

(4.2)
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spectively, and

<a_>5>1= co—x2)/2An

on

a
<_X> =(x1—xs)/24n,

1/ 2

where An is the grid-length along the » direction. It
may be seen that the above-mentioned formula for
(8x/dn)o corresponds to linear extrapolation of dx/dn
from inner to outer grid-points. It has been found by
trial and error that this version of evaluation of (3x/dn),
gives the best results.

The boundary values V, and V, in Equations (1.6)
and (1.7) are required to satisfy the integral constraints:

//g“a’xdyszsds

A
//D(lxdy:fV,,(lx
J -

where A denotes the area of computation. The values
of V, and V, are suitably altered so as to satisfy the
above constraints. The modification is always seen to
improve the results.

(4.3)

(4.4)

b. Verification paramelers

In the present paper, the following verification
parameters are calculated:

i) Kinetic energy (per unit area) of the observed
Wind, (K())’

K= []Z_V: (u02+7)02)i]/N~

ii) Kinetic energy (per unit area) of the recomputed
nondivergent wind, (Ky),

Ky=[2 (ug*+vy»)J/N.

=]

ili) Kinetic energy (per unit area) of the recomputed
total wind, (Kyyy),

N
Kypx= [E (g F oD /N

iv) Root-mean-square vector error between the
observed and the recomputed non-divergent
wind, (Ey),

N
Ey= [El { (uo—1ny)24(vo—2y) %} ]/N.
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v) Root-mean-square vector difference between the
observed wind and the reconstructed total wind,

(E\l/+x),

N
Eyix=L2 {(o—1y1)*+(v0—2415)%} ]/ N,

i=1
where IV is the total number of grid-points considered
for the verification, and #y., =uy+u, and vy, =vy+,.

¢. Data and area of computation

The basic data for computations consist of wind di-
rection and speed at 2.5° latitude-longitude grid-points,
picked up from manually-analyzed streamline-isotach
charts. The area of computation extends from S0E to
"100E and from 2.5N to 40N, as shown in Fig. 5. In
the present study, data for 700 mb and 500 mb only
have been used. Although the computations have been
performed for several map times, the results are pre-
sented for four days only. These days are 1 and 2 July
1963, and 18 and 19 December 1968. Some results are
also presented for the period 24-27 December 1968.

Computations were performed on the CDC 3600
computer available at the Tata Institute of Funda-
mental Research, Bombay.

d. Results

The results of computation by methods I-IV de-
scribed in the present paper are presented in Tables
1-4 respectively. A significant feature of these results

TasLe 1. Results of computation by Method 1.

K, Ky Kyix Ly Lgix
Date m2sec™ m?sec™? m?sec? msec! msec!
1/ 7/63 38.424 16.297 20.642 4.824 4320
2/ 7/63 45.207 16.835 21.011 5.308 4.803
18/12/68 132.442 50.79 52.209  9.101 8.018
19/12/68 132.325 58.256  58.657 7.601 7.600
TaBLE 2. Results of computation
by Method I1.
Ko Ky Kyix Iy LEyix
Date m2sec™? mi’sec? m?sec? msec? msec!
1/ 7/63 38.424 40.418 39.717  4.670  3.487
2/ 7/63 45.207 42.685 43478 4175  3.00
18/12/68  132.445  144.765 141.573  3.820 3.134
19/12/68  132.325  160.780  154.484  3.145 2.326
TasLe 3. Results of computation
by Method TII.
Ko Ky Kyix £y Eyix
Date m?sec™® m?sec? m?sec? msec! msec?
1/ 7/63 38.424 41.514 40.780  4.749  3.587
2/ 7/63 45.207 40.447 41.397  3.981 2.741
18/12/68  132.442 148.518  144.514  3.266  2.253
132.325  161.823  155.463  3.189 . 2.369

19/12/68
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230(

~
"

Value of overrelaxation

coefficient
190

4
0

No.of iterations to
converge

1. 4. Number of iterations required for convergence for
different values of over-relaxation coefficient.

is that in every case Fy, is smaller than E, and that
[ Ko—Ky.x| is also always smaller than | Ko— K| which
means that the inclusion of the X component always
improves the results, i.e., Vyy, always gives a better
representation of the original observed wind than Vv,
alone.

While discussing Table 4 which gives the results of
computation by Method IV for m=1 and m=4, it
should be pointed out that as a rule the iterations of
Scheme II are continued up to m=20. The verification
parameters are computed at every stage and stored in
computer memory. The value of Ey,, at each stage is
compared with that at the previous stage and the
iteration is terminated after Ey.,., has crossed the mini-
mum. In order to see if there is more than one mini-
mum for Ey,, with respect to m, some calculations were
extended up to m=100. In all the cases, however, it was
found that the minimum of Ey., occurred at m=4
only. In fact, a study of the verification parameters
revealed the following general features:

TasLE 4. Results of computation
by Method IV.

K,y Ky Kyix Iy Fyy

Date m?sec™? m?sec? misec? msec! msec!

1 763 M=1384 26078 20710 2639 1281
m=4384  22.830 30165 3.083 1270

m=1452 31213 34782 2791 1438

2/ 7/63 4452 26537 37950 3120 1361
m=11324 123284 121238 2435 1485

18/12/68 . _ 41324 17177 122432 3.076 1476
m=11323 132.535 127435 2.328 1.461

19/12/68 L _ 41323 141770 130251 3203 1413
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Fi16. 5. Area of computation and distribution of grid-points.

i) The minimum values of Ey and Ey., did not
occur at the same stage. The same was the case
for the maximum values of xy and Ky 4.
ii) E, was generally minimum for m=1 and then
it started diverging for higher values of m.
ili) Eyyx was minimum for m=4 and then the value
started diverging out.

It may, however, be pointed out that the outcome
of the present study is not to conclude that the mini-
mum of Eyy, will always occur at the stage m=4. It
may occur at any other value of m also. However, in
the cases studied in the present paper, the minimum
value of Ey 4 occurred at m=4.

5. Effect of enlarging the area of computation

In order to study the effect of enlarging the area of
computation, two sets of computations were performed
for two different sizes of the area of computation. First
set of the computations was made for a 21X16 grid
(21 grid points along x-axis and 16 grid points along
y-axis) as shown in Fig. 5. For this set of computations,
data for the area between S0E to 100E and 2.5N to
40N were used. The root-mean-square vector error
between the observed and recomputed wind was
calculated for the whole area excluding the outermost
two grids from all the four sides. The r.m.s.v.e. value
was also calculated only for the Indian region extending
from 10N to 27.5N and from 70E to 90E and this
smaller area will be, hereafter, referred to as the inner
verification area.

Another set of computations was performed for a
larger area so that the outer boundary is removed away
from the inner verification area. This set of computa-
tions was made for 41X 20 grid using the data for the
area between 20E and 120E and 2.5N and 50N. Error
computations were compared with the error values
for the inner verification area as in the first set of
computations.
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TaBLE 5. Intercomparison between the results of smaller and
bigger area of computation.

Ey E
Date Area considered msec? m :gé“

Smaller area (21X16) 2.778 1.924

24/12/68 T4 reer area (413¢20) 2602 1.623
Smaller area (21X16) 3.312 2.026

2

25/12/68 Larger area (41X20) 2.872 1.771
Smaller area (21 X16) 3.148 1.891

26/12/68 Y ger area (41X20) 3064 1.813
Smaller area (21 X16) 3.998 2.834

27/12/68 T arger area (41%20) 2083 1831

Table 5 gives the results of computations for both the
areas. These computations correspond to the stage m=1
in Section 4. It is seen that there is an improvement in
the result after removing the boundary away from the
inner verification area. These results, however, should
be accepted only with caution because the effect may
not be purely due to removal of the boundary away from
the verification area but also due to observed values of
the wind at the boundary.

6. Results of intercomparison among the methods

Table 6 gives the value E, and Ey., for the several
methods for which the computations have been made.
It may be recalled that all the results mentioned in
Table 6 are for the same area of computation and there-
fore permit an intercomparison among themselves.

TABLE 6. Intercomparison among the results for
different methods of computing ¢ and x.

: Ey Eyix
Date Methods (m sec™) (m sec™!)
Method " 1 4.824 4.320
1/ 7/63 Method II 4.670 3.487
Method IIT 4.749 3.587
. m=1 2.639 1.281
* Method IV
m=4 3.083 1.270
Method I 5.308 4.803
2/ 7/63 Method II 4175 3.000
Method IIT : 3.981 2.741
m=1 2.791 1.438
Method IV
m=4 3.120 1.361
Method I 8.101 - 8.018
- 18/12/68 Method IT 3.820 3.134
Method IIT 3.266 2.253
m=1 2.435 1.485
Method IV
m=4 3.076 1.476
Method I 7.601 7.600
19/12/68 Method II 3.145 2.326
Method IIT 3.189 2.369
m=1 2.328 1.461
Method IV
m=4 3.293 1.413
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Compared to other methods, Method I gives the highest
values of E; as well as E, ., for all the days. Method
IV gives the lowest values of Ey and Ey,, for all the
days. Methods IT and IIT give results which are better
than Method I but worse than Method IV. Between
Methods II and III, the result depends upon the
synoptic situation which implies the distribution of
V, ¢ and D. In method IV, the values of E, for m=1
is always less than the value of E, for m=4 but the
value of Ey., for m=4 is always less than the value of
Ly, for m=1 This result was also found for the compu-
tations of several other map times which have not been
reported here. This result leads us to the conclusion
that the error between the observed and the recon-
structed nondivergent wind is always minimum for
m=1 and the error between the observed and the re-
constructed total wind is always minimum for m=4.
It may be further noted that various other combin-
ations of ¢ and x were also tried but the results did not
improve. In particular, the total reconstructed wind was
obtained by combining ¢ for m=1 and x for m=4 but
the results were found to be worse than the case in
which ¢ and x both were taken for m=4. Similarly ¥
for m=1 was combined with x for m=1, 2, 3, 4, . . .,
etc., but the results did not improve over the results
presented in the preceding section for m=1 and m=4.

7. Conclusions

From the study of the results of computations by
all the methods using data of several map times and
from their intercomparisons the following conclusions
may be drawn:

i) For the computation of ¢ and x there appears to
be no unique method of specifying the boundary
conditions.

i1) The results of computations of ¢ and x appear to
depend upon:

a) Type of boundary condition

b) Type of finite difference scheme used to
evaluate the differentials

c) Type of synoptic situation which implies
the type of distribution of wind, vorticity,
and divergence fields

d) Relative magnitudes and distribution of
vorticity and divergence.

iti) There is some improvement in the results by
removing the boundary of computation away
from the area of verification.

iv) There is no unique way of making intercom-
parison among the various methods of computing
¥ and x. However, the criterion of minimum root-
mean-square vector error between the observed
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and the reconstructed wind is found to be suit-
able for the purpose.

v) The computations with ¢ =0 as the boundary

condition give the worst results.

The root-mean-square vector error between the

observed and reconstructed nondivergent wind

is minimum for m=1 of Method IV.

vii) The method suggested in the present study (m=4
of Method IV) gives minimum root-mean-square
error between the observed and the reconstructed
total wind.

vi)
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