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Abstract

We have discussed the physical mechanisms through which changes in the
boundary forcings of SST, soil moisture, albedo, sea ice, and snow influence
the atmospheric circulation. The slowly changing boundary forcings can
increase the predictability of monthly means because their effects on quasi-
stationary flow patterns and statistics of synoptic scale ‘disturbances appears
to be potentially predictable. Changes in the boundary forcings produce changes
1n_the moisture sources and diabatic heat sources which in turn change the
atmospheric circulation. The magnitude and the structure of the atmospheric
response due to changes in any boundary forcing depends upon the existence of a
suitable large scale flow which can transform the boundary forcing into a three
dimensional heat source, which in turn can change the large scale flow and its
stability properties. The structure of the large scale flow also affects the
propagation characteristics of the influence which determines whether the effect
is local or away from the source.

We have presented results of numerical experiments conducted with the GLAS
climate model to determine the sensitivity of the model atmosphere to changes
in boundary conditions of SST, soil moisture, and albedo over limited regions.
It is found that changes in SST and soil moisture in the tropics produce large
changes in the atmospheric circulation and rainfall over the tropics as well as
over mid-latitudes. Although the area occupied by the land surfaces is small
compared to the ocean surfaces, the fluctuations of soil moisture can be very
important because the diabatic heat sources have their maxima over the land,
and therefore, even small fluctuations of soil moisture can produce large changes
in the total diabatic heating field. The natural variability due to day to day
weather fluctuations is very large in the middie latitudes, and therefore, changes

in the mid-latitude atmospheric circulation due to changes in the boundary



forcings at middle and high latitudes have to be quite large to be significant.
It is suggested that large scale persistent anomalies of SST, snow and sea ice,
under favorable conditions of large scale flow, can produce significant changes
in the mid-latitude atmospheric circulation. It is also likely that time
averaged mid-Tatitude circulation can have additional predictability due to the
influence of tropical boundary forcings.

We have also presented observational evidence to show that interannual
variability of atmospheric fluctuations is significantly different from the
intra-annual variability, and therefore, we conclude that part of the 1ﬁter-
annual variability is due to the influence of boundary forcings. Since the
tropical spectra is found to be redder compared to the mid-latitude spectra,

the tropical flows may be potentially more predictable.



1, INTRODUCTION

In a previous paper (Shukia, 1981) we examined the predictability of the
initial conditions without external %orcings, and it was shown that the dynamical
predictability of the observed planetary wave configurations is suffiéient1y
Tong that the predicted monthly means are significantly different from the
monthly means due to random perturbations in the initial conditions. It was
further suggested that in addition to the dynamical predictability of the
monthly means there can be additional predictability due to the influence of
the boundary forcings. This paper examines the influence of slowly varying
boundary forcings at the earth's surface in determining the monthly mean
circulation anomalies in the afmosphere. Figures la and 1lb show the schematic
distribution of sea surface temperature (SST), soil moisture, surface albedo,
snow cover and sea ice. There is sufficient observational evidence to assume
that the rate of change of anomalies of these boundary forcings is slower than
the corresponding atmospheric anomalies, and therefore for a limited period
of time (viz. a month or sometimes even a season) these can be considered as
naxternal® forcing to the atmospheric circulation. In the present paper, we
will confine our discussion only to these five boundary forcings. A discussion
of the influence of truly external forcing due to solar variability is beyond
the scope of the present paper. Similarly, effects of slow changes in the
composition (viz. CO2) and optical properties of the atmosphere will not be
considered because they appear to be too slow to affect monthly prediction.

One straightforward approach to determining the influence of boundary -condi-
tions on monthly mean prediction could be to carry out actual forecast experi-
ments using the observed initial and boundary conditions. To our knowledge, no

such forecast experiment has yet been carried out in which the global distribu-

tion of observed boundary forcings was used. It is only recently that global



observing systems capable of determining global boundary conditions have been
established, and still it is a formidable (but feasible) task to determine

a global distribution of accurate boundary forcings. Another approach to
detérmine the influence of the boundary forcings is to carry out a series of
controlled sensitivity experiments with realistic general circulation models
and to determine the regional distributions of time averaged response. This
has been done using a variety of models and a variety of anomalous boundary
forcings. A review of all such experiments carried out by many investigators
is not possible in this paper. Here we summarize the results of'onTy a few
selected numerical experiments carried out with the Goddard Laboratory for
Atmospheric Sciences (GLAS) climate model.

It should be pointed out that most of the numerical experiments carried
out in the past were not especially designed to investigate the question of
monthly predictability and, therefore, there was no detailed examination of
the response during the first 30 days. The main interest was the difference in
the simulated mean climate after the model has equilibrated to the altered
boundary forcings. Such experiments are also quite useful for understanding the
basic mechanisms and establish the role of boundary forcings in the interannual
variability of monthly and seasonal means. In earlier studies, the choice of
the geographical location of the anomaly {of SST or sea ice, etc.) was mostly
determined by an analysis of the past observations, and naturally the past
observations were analysed only for those areas for which data were conveniently
available. On the basis of such observational studies and subsequent numerical
| experiments, several preliminary conclusions have been drawn about the possible
relationships between the boundary forcing anomalies and the atmospheric cir-
culation. These studies do not rule out the possibility that SST anomalies

over other areas (hereto unexamined) will not be equally important. In fact,



it is quite 1ikely that all the boundary forcing, if considered globally, will
produce more realistic and systematic response in the atmospheric circulation.

One of the main contentions of this paper is to emphasize that further sensitivity
and predictability studies using observations, simple linear models and complex
GCMs should also be carried out for global distributions of boundary forcing
anomalies.

Before presenting the results of actual numerical experiments, we will
briefly mention some mechanistic considerations which suggest a physical basis
for the influence of the boundary forcings.

1) Changes in the boundary forcings directly influence the location and
intensity of the diabatic heat sources which drive the atmospheric circulation.
The forcing at the boundary itself is generally not sufficient to produce
significant changes in the atmospheric ¢irculation; however, under favorable
conditions of large scale convergence and divergence, the boundary effects get
transmitted to the interior of the atmosphere and a thermal boundary forcing
gets transformed into a three-dimensional heat source which can be quite effec-
tive in influencing the dynamical circulation. The effectiveness of a boundary
forcing in changing the atmospheric circulation therefore strongly depends
upon its ability to produce a deep heat source and the ability of this influence
to propagate away from the source. Since both of these factors are determined
by the structure of the large scale dynamical circulation itself, the response
of a given boundary forciné can be very different depending upon its size and
geographical location, and upon the structure of the large scale circulation.

2) Boundary forcings of SST, soil moisture, surface albedo, snow and ice
not only affect the heat sources and sinks, but they also affect the sources
and sinks of moisture, which in turn affect the latent heat sources.

3) Existence of nonlinear multiple equilibrium states for a prescribed

external forcing suggests that even weaker anomalies of boundary forcings,



under favorable conditions, can produce significant anomalies in atmospheric
circulation, and therefore actual response may be stronger compared to the one
estimated from linear theories.

4} It is known that the inconsistency between the observed initial condi-
tions and the prescribed stationary forcings due to mountains and diabatic
heat sources can manifest itself as erroneous propagating transient components
(Lambert and Merileeé, 1978; Shukla and Lindzen, 1981). It is therefore desirable
that fo~ actual dynamical prediction from observed initial conditions, the observed
global distribution of boundary forcings be used correctly. This will reduce
the inconsistency between the initial cond%tions and the forcing, and therefore
can reduce the growth of error of prediction.

In Part I we examined predictability for prescribed nonfluctuating boundary
forcings, and the predictability was determined by error growth rate and error
saturation value. We can identify the following reasons due to which changes
in boundary forcings can influence thesé classical predictability parameters.

a) Changes in the boundary forcings can change the intensity and geograph-
ical location of synoptic scale instabilities. For example, changes in the
amplitudes and phases of planetary waves can affect the storm tracks, which can
affect the error growth and predictability in a particular region.

b) Changes in the boundary forcings can alter the saturation value of the
error. As described earlier, the saturation value of the error depends upon
the equilibration mechanisms which are different for different circulation
regimes and also for different scales of instabilities. Boundary forcings can
alter the equilibration level of the dominant fluctuations, resulting in a
significant change in the time averaged mean circulation. It should be pointed
out that the effects can‘be very different for different parameters. For

example, if for a given value of boundary forcing, the amplitude of the wave



disturbances is much less than its amplitude for another value of the boundary
forcing, and if heavy rain or snow falls only during half of the life of each
wave disturbance, and if the rate of rainfall is proportional to the intensity
of the disturbance, then‘a}though the time averaged value of pressure or temper-
ature will not be very different for two values of boundary forcing, the rainfall
will be very different. This suggests that sometimes it may be quite useful

to predict only the variance of a particular parameter.

2. SENSITIVITY QF MODEL ATMOSPHERE TO CHANGES IN BOUNDARY FORCINGS

In this section, we have summarized the results of several sensitivity
studies carried out with global general circulation models to determine the

influence of prescribed changes in SST, soil moisture, surface albedo, snow and

sea jce, ete.

2.1 Sea Surface Temperature

The factors which determine the influence of sea surface temperature (SST)

anomalies can be briefly summarized as follows.

(1) The magnitude and the spatial and temporal structure of the anomaly.

Considering the linear response of the atmospheric system to diabatic forcing,
the magnitude and the spatial scale of the anomaly can directly affect the
response to the atmosphere. Large, persistent anomalies can produce a larger
response than small fluctuating anomalies. The magnitude of the anomaly is

also important in determining the nonlinear increase of evaporation and sensible
heat fluxes.

(ii) Normal sea surface temperature. Due to the nonlinearity of the Clausius-

Clapeyron equation, a 1° positive anomaly over a normal SST of 30° produces a



much larger change in saturation vapor pressure than the same 1° anomaly super-
imposed upon a normal temperature of 20°, It is partly for this reason that
anomalies in Tow }atitudés can produce larger responses compared to similar
anomalies in middle latitudes, The final response also depends upon the back-
ground SST field.

(111) The latitude of the anomaly. Because of the smallness of the Coriolis

parameter, horizontal temperature gradients in the tropics produce a much larger
thermal wind than in middle latitudes. Due to the lack of geostrophic constraint
in Tow latitudes, thermal anomalies produce much larger convergence than in
middle latitudes (Hoskins and Karoly, 198l; Webster, 1981}).

(iv) Circulation regime. The potential response of a given anomaly strongly

depends upon the structure and dynamics of the circulation regime in which the
anomaly is embedded. For example, a warm anomaly in the areas of large scale

convergence (viz. ascending branches of Hadley and Walker cells) will be more

effective than a comparable anomaly in the area of divergence. Similarly, in

the middle latitudes the effect of a SST anomaly will strongly depend upon the
location of the anomaly with respect to the phase of the prevailing planetary

wave configurations. -

(v) Instability mechanism. The time required for the atmosphere to feel

the effect of the SST anomaly also depends upon the most dominant instability
mechanism which determines the generation of a deep heat source due to surface
anomaly. In tropical latitudes where CISK is the primary driving mechanism, a
conditionally unstable atmosphere may respond rather quickly to a warm SST

anomaly, whereas in mid-latitudes where the primary driving mechanism is baroclinic
instability a given SST anomaly would affect the vertical shear and, therefore,

the growth rates of baroclinically unstable waves.

(vi) Structure of zonal flow. Once a SST anomaly has produced a heat

source, the structure of the prevailing zonal flow is of crucial importance in



determining the propagation characteristics of the disturbances produced by the
heat source. Tropical influences can affect the mid-latitude circulation by

Rossby wave propagation or by changing the intensity of the Hadley cell and mid-
latitude zonal flows which can interact with the mid-latitude thermal and orographic
forcings.

In summary, the influence of boundary anomalies on the atmospheric circulation
depends upon the existence of a favorable dynamical environment in which the
surface forcing can be transformed into a three~-dimensional heat source and the
ability of this influence to propogate away from heat source. A warm anomaly
in the tropicé enhances evaporation and increases the moisture flux convergence
which is the main contributor to the enhanced precipitation over the anomaty.
Increased evaporation lowers the 1ifting condensation level, increases the buoyancy
of the moist air, accelerates the deep convéctive activity, and increases the
latent heating of the atmospheric column which furfher reduces the surface
pressure and enhances moisture convergence. In the tropics, SST anomalies can
also produce considerable effects away from the anomaly by modifying the areas
of convergence and divergence. For example, if the intertropical convergence
zone remains stationary over a very warm SST anomaly for a considerable length
of time, those areas where ITCZ would have moved in its normal seasonal march
will experience severe droughts. Similarly, a warm SST anomaly can change the
location and intensity of the Walker circulation and enhanced ascending motion
associated with the warm SST anomaly can produce reduced precipitation in the
adjoining areas. This suggests that the effects of SST anomalies can be very
nonlinear for particular regions, depending upon the location of the region
with respect to the ascending branches of Hadley and Walker circulations. This
nonlinearity can disappear for averages over very large areas. SST anomalies
can also affect precipitation over distant areas by altering the moisture

supply for the region.




The influence of SST anomalies for mid-latitudes is different than that
for the tropics. SST anomalies in mid-latitudes, if they can produce a deep heat
source, can change the quasi-stationary wave patterns which in turn can affect
the location and.intensity of the storm tracks. Therefore, the mid-latitude
SST anomalies have a considerable potential to produce distant effects. This
potential, however, is not fully realized for several reasons. The normal
ocean temperature in mid-latitudes is relatively cold; the moist convection is
not well organized and efficient enough to produce deep heat sources; due to
strong geostrophic balance even large gradients in temperature do not produce
large convergence, and finally, the natural variability of the mid-latitude
atmosphere is so large that small effects due to boundary forcings cannot be
distinguished from synoptic weather fluctuations.

Most of the observational and numerical studies that have been carried out
so far have only looked into the influence of regional SST anomalies. We do
not have enough observational and numerical experimental results to describe the
effects of hemispheric and global scale SST anomalies. We hope that future
studies will examine the effects of very large scale SST anomalies. Here we
shall present the results of a few sensitivity studies carried out by global
general circulation models to determine the influence of regional SST anomalies.

2.1.1. Effect of Arabian Sea sea surface temperature anomaly on Indian monsoon
rainfall

Several observational studies have suggested that SST anomalies over the
Arabian Sea can be one of the jmportant boundary forcings which determine the
monsoon rainfall and therefore affects its interannual variability. A numerical
experiment was carried out by Shukla {1975) using the Geophysical Fluid Dynamics
Laboratory (GFDL) model to test the validity of observed correlations. A cold

SST anomaly shown in Figure 2a (anomaly run) was imposed over the climatologic:l



SST (control run) and the model was integrated for both cases. Figure 2b shows
the model simulated rainfall of the Indian region for anomaly and control inte-
grations. It is found that due to cold $ST anomalies over the Arabian Sea
monsoon rainfall is reduced over India. A similar experiment was carried.out

by Washington et al., (1977) using the National Center for Atmospheric Research
(NCAR) model; however, their results were contrary to both the numerical results
of the GFDL model and observed correlations. We have examined the results of
the Goddard Laboratory for Atmospheric Sciences (GLAS) climate model in which

a warm SST anomaly very similar in pattern to the anomaly shown in Figure 2a

was used. Figures 3a and 3b show the model simulated rainfall for anomaly and
control runs averaged over two areas shown in Figure 3c. The GLAS model was
integrated for three different initial conditions, but very similar SST fields
over the Arabian Sea. The curves labeled ANOMALY in Figures 3a and 3b show

the average rainfall for three anomaly runs and the vertical bars denote the
standard deviation among the three runs. It can be seen that warm SST anomalies
over the Arabian Sea, as prescribed in these experiments, can produce enhanced
monsoon rainfall over India. We do not know, however, whether such large
anomalies are actually observed.

The apparent disagreement between the results of Washington et al., (1977)
using the NCAR model, and our results using the GFDL and GLAS models can be
explained by examining the low level monsoon flow as simulated by the three
models and shown in Figure 3d. The low level monsooﬁ flow as simulated by GFDL
and GLAS models are more realistic compared to the NCAR model. In the NCAR
model simulation, the air parcels flowing over the Arabian Sea hardly reach
the Indian region as there is a strong but unrealistic southward flow before
the monsoon current reaches the Indian coast. This could be one of the possible

reasons why the NCAR model did not show significant response over India. This
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example illustrates the importance of a realistic simulation of the mean c¢limate
by the dynamical model used for the sensitivity studies. In order to be able

to detect the effects of changes in the boundary forcings, and for the possible

use of such models for prediction of time averages, the model should be able to

simulate the mean climate accurately.

2.1.2, Effect of tropical Atlantic sea surface anomalies on drought over
northeast Brazil

Moura and Shukla (1981) examined the monthly mean SST anomalies over the
tropical Atlantic during March and rainfall anomalies over northeast Brazil
during March, April and May. They found that the most severe drought events
were associated with the simultaneous occurrences of warm SST anomalies over the
north tropical Atlantic and cold SST anomalies over the south tropical Atlantic.
They also carried out numerical experiments to test the sensitivity of the GLAS
climate model to prescribed SST anomalies over the tropical Atlantic. It was found
that the SST anomaly patterns, which resemble the observed ones during drought
years, produced an intensified convergence zone (ITCZ), enhanced rainfall and
Tow Tevel cyclonic circulation to the north, and reduced rainfall and anticy-
clonic circulation to the south.

Figure 4a shows the SST anomaly used fér the numerical experiment; the
magnitude was chosen to be comparable to the maximum values observed éuring
the 25 year period (1948-72). Figure 4b shows the 15 day running mean time
series of daily rainfall averaged over the areas A and B {shown in Figure 4a)
for control and anomaly runs. Area A includes the region of warm SST anomaly
and area B contains the northeast Brazil region'and the neighboring oceans with
the cold SST anomaly. The rainfall over area A increases due to the warm SST
anomaly and a shift‘of the-ITCZ occurs from area B in the control run to area

A in the anomaly run. Although the difference in rainfall is not systemalic
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after 60 days, for days 20-60 the anomaly run has consistently less rainfall
than the control run ovef northeast Brazil region. Figure 4c shows the differ-
ence of the first 60 day mean meridional c¢irculation averaged between 50°W and
5°%. The anomalous meridional circulation shows an ascending branch with
maximum vertical motions between 5° and 10°N and a descending branch to the
south of the equator. A thermally direct local circulation is established with
its ascending branch at about 10°N and its descending branch over northeast
Brazil and adjoining oceanic regions. The driving for the anomalous circula-
tion is provided by convection and tatent heating associated with warmer SST
anomalies over the northern tropical Atlantic, and cooling associated with
colder SST anomalies in the southern tropical Attantic. The combined effects
of thermally forced subsidence and the reduced evaporation and moisture flux
convergence produces severe drought conditions over northeast Brazil. It should
be pointed out that descending motion influences a larger region to the east
and west of northeast Brazil, however, the effect is most seriously felt over
northeast Brazil. It was also noticed that the anomalous meridional circuta-
tions exhibited significant changes in the middle latitudes of both hemisphere.
Figure 4d shows the autocorrelation function for SST anomalies at 15°S,
5°% and at 15°N, 45°W. The strong persistence of SST anomalies in these two
areas suggests the potential for prediction of drought over northeast Brazil.

2.1.3 Effect of Equatorial Pacific SST Anomaly on Tropical and Extratropical
Circulations.

Horel and Wallace (1981) and Rasmusson and Carpenter (1982) have presented
observational evidences of remarkable relationships between SST anomalies in
tropical Pacific and a variety of atmospheric fluctuations including the Southern
Oscillation and the Northern Hemispheric middle Tatitude circulations. "Warm

episodes of equatorial Pacific SST anomalies are associated with the negative



12

phase of the Southern Oscillation, weakening of easterlies in equatorial central
Pacific, enhanced precipitation at equatorial stations east of 160°E, an intensi-
fied Hadley cell in Pacific sector, and a deepening and southward displacement
of the Aleutian Tow" (Horel and Wallace, 1981). Analyses by Rasmusson and
Carpenter (1982) have shown that during the month of December, a small warm SST
anomaly appears along the Peru coast which rapidly increases to its peak value
along the Peru coast during March and April of the following year. In the month
of February of the following year, the warm SST anomaly disappears rapidly along
the Peru coast, but the warmest SST anomalies are observed in equatorial central
Pacific. It is these warm SST anomalies over the central Pacific, which occur
over a climatologically warmer ocean surface which is also an area of large
scale convergence, that produce a deep tropical heat source whose effects can
propagate to the extratropical latitudes. Therefore, although the signal for a
warm SST anomaly during February of a given year could be traced back to warm
SST anomalies over the Peru coast fourteen months earlier, it is the enhanced
heating associated with the SST anomaly during February that produces significant
changes in the winter circulation of the northern mid-latitudes. Hoskins and
Karoly (1981) used a multi-level linear primitive equation model to show that
diabatic heat sources in the tropical regions can produce significant stationary
responses in the middle latitudes if the zonal flow is favorable for the propa-
gation of Rossby waves.,

Shukla and Wallace (1983) have conducted sensitivity experiments with the
GLAS climate model to study the response of SST anomalies in equatorial Pacific.
Figure 5a shows the average of SST anomalies observed during the months of
November, December and January of 1957-58, 1965—66, 1969-70, and 1972-73,
provided to us by Dr. Rasmusson of NOAA. The GLAS climate model was integrated

with (anomaly run) and without {contrel run) the SST anomalies shown in Figure 5a.
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Figure 5b shows the difference (anomaly minus control) field for 300 mb geopo-
tential height averaged for days 11-25. It is seen that a difference of about
300 meters over North America and about -90 to -150 meters over Pacific and
Atlantic is in agreement with results of observational studies as well as the
results of linear models. Upper level highs to the north of the anomaly and a
series of lows and highs further north and west are manifestations of Rossby
waves propagating from the heat source. An examination of day-to-day changes
from day 1 through 30 showed that this particular pattern was already established
during days 5-10. However, it takes several days before model physics can
generate a deep heat source above the warm SST anomaly. It should be pointed
out that although the results of the Tinear models and this general circulation
model are similar, there is a basic difference for their applicability to
dynamical prediction of monthly means. The simple models prescribe the diabatic
heating fields, whereas the general circulation model generates a diabatic
heating field due to the presence of the warm SST anomaly, and therefore for a
model to be useful as a prediction tool, its physical parameterizations must

be able to transform the surface boundary forcing into a deep heat source. As
mentioned eariier, the propagation of the tropical influences depends upon the
structure of the zonal flow (influences cannot propagate across the zero wind
line). In the present experiment, although the SST anomaly was centered right
over the equator, the zonal flow was favorable for the tropical effects to
propagate to middle latitides.

We have also examined the changes in the model simulated Hadley and Walker
cells due to the prescribed SST anomalies. Figure 5¢ shows the difference
between the Hadley cell for the anomaly and the control run averaged for days
6-25. It is seen that the zonally averaged Hadley cell intensifies due to

warm SST anomalies over the equatorial Pacific, The Hadley cell over the Pacific
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sector alone is intensified even more. It was also noticed that in association
with stronger Hadléy cells, the westerly zonal flow was also stronger between
20° and 30°N. Figure 5d shows the difference (anomaly minus control) for the
model simulated Walker cells averaged between 6°N and 6°S for days 6-25.
Anomalous ascending motion occurs between the longitude sector 160°FE - 160°W
and descending motion occurs between the longitudes 140°E - 160°E. This is
consistent with the observational evidence of enhanced precipitation east of
160°E being associated with warm SST anomaiies.

A remarkable aspect of the results of this experiment is that the pres-
cribed SST anomaly was an algebraic mean of four different episodes and there-
fore the prescribed maximum warm anomaly at any grid point was perhaps less
than observed during any individual year. However, it produced significant
changes within the first 30 days. The results also suggest that the SST ano-

malies can be of importance even for medium range (5-15 days) forecasting.

2.1.4 Effect of north Pacific SST anomaly on the circulation over North America.

As it was pointed out earlier, due to the large day-to-day variability in
the middle latitudes, it is difficult to detect the influence of SST anomalies.
However, if a large scale SST ahoma]y of large magnitude persists for a long
time, it can also produce significant effects in the midlatitude circulation.
During the fall and winter of 1976-77, SST in the north Pacific was characterized
by abnormally cold temperatures in the central and western portions of the
northern Pacific with a warm pool located off the west coast of the U.S. (Figure
6a). Namias (1978) has suggested that the northern Pacific SST anomalies may
have been one of the multiple causes of the abnormally cold temperatures in the
eastern North America during the 1976-77 winter. We have carried out numerical
experiments with the GLAS climate model to test this hypothesis. It should be

noted that although the pattern of the SST anomalies observed during January
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1977 was similar to the one shown in Figure 6a, the magnitude of the anomaly
was only slightly more than half of the magnitude shown in the figure. It
should also be pointed out that during January 1977 a warm SST anomaly over the
equatorial Pacific was also observed and it is likely that the circulation of
North America could have been affected by combined effects of both anomalies.
In this experiment, we have attempted to determine the effect of north Pacific
SST anomaly only. We have integrated the GLAS climate model with six different
initial conditions and climatological mean SST (control run) and for two of
these initial conditions we have also integrated the model with imposed SST
anomalies (anomaly run). The results that we show here are the differences
between an average of six control runs and two anomaly runs.

Figure 6b shows the difference (anomaly minus control) for the 700 mb
temperature averaged for days 15-45. As expected, negative temperature ano-
malies are found over the maximum negative SST anomaly and a warm 700 mb temp-
erature anomaly is found over the warm SST anomaly. The most remarkable
feature of this map, however, is the occurrence of two other centers of nega-
tive 700 mb temperature anomaly, one along 75°W and the other along 70°E. The
cold 700 mb temperature anomaly over northeast North America is of largest
magnitude. This feature suggests a planetary wave response due to north Pacific
SST anomaly. The ratio between the temperature differences shown in Figure 6b
and the standard deviation among the six control runs with climatological SST
shows (Figure 6¢) that the colder temperatures at 700 mb over northeast North
America are as significant as the ones over the cold SST anomaly. The difference
map (anomaly minus control) for the 500 mb geopotential height field shows (Figure
6d) that colder temperatures over northeast North America were due to anomalous

northerly flow of cold air which in turn was caused by anomalous positive
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geopotential height anomalies to the west and negative geopotential height
anomaties to the east. There are discrepanbies between the simulated and the
observed anomaly during the winter of 1977, because the response is one quarter
wavelength out of phase. However, a detailed examination of the day-to-day
evolution of the flow for the control and anomaly runs revealed that a persistent
blocking type of flow configuration existed in the anomaly run for more than

15 days (Chen and Shukla, 1983). Such persistent blocks did not occur in the
control case. We are not quite sure if the blocking event génerated in the
anomaly run was due to presence of the SST anomaly. However, on the basis of
the results of these experiments and the results of several observational
studies, it is our conclusion that for favorable structures of the large scale
flow, large scale SST anomalies in the mid-latitudes can be important in deter-

mining the anomalies of the mid-Tatitude circulation.

2,2 Soil Moisture

The annual average rainfall for the global continents is estimated to be
about 764 mm of which 35-40% (266 mm) runs off to the oceans {Baumgartner and
Reichel, 1975). Assuming no secular trends in the annual mean global soil
moisture, this suggests that the annual and global mean evaporation from the
Tand surfaces alone is more than 60% of the annual and global mean precipitation
over the land. The percentage is even higher during the local summer for
several regions. This suggests that the evaporation from the land surfaces is
a very important component of the global water budget and hydrological cycle.
However, it does not necessarily follow that the water evaporated from the
land is important in determining the rainfall over the land. For example, all
the water erorated from the land could be advected away to the oceans before

it recondenses and rains. In that case, it will affect the moisture budget
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and evaporation only over the oceans, which in turn will, of course, affect

the moisture supply for rainfall over the Tand. In order that the evaporation
from the land affects the rainfall over the land, it is necessary that the
prevailing dynamical circulation be such that the land evaporated moisture
recondenses and falls as rain before being advected away. That will depend upon
the geographical location of the region under consideration, the prevailing
advective velocity, the structure and intensity of the convergence field, and
the vertical distribution of moist static energy which determines the nature

of moist convection.

The role of soil moisture is twofold. First, it determines the rate of
evaporation and, therefore, the moisture supply, and second, it influences the
heating of the ground which determines the sensible heat flux and affects the
dynamical circulation by generation or dissipation of heat lows. The interac-
tion between the heat lows, generated by solar heating of the ground in the
absence of soil moisture, and associated circulation and rainfall is further
compiicated by the fact that the maintenance and the intensification of the
Tow pressure areas is largely influenced by the latent heat of condensation.
For example, if the soil is saturated with water, and the evaporation is equal
to the potential evapotranspiration, there will be maximum possible supply of
moisture to the atmosphere. Whether increased evaporation will also increase
the rainfall will depend upon the structure of dynamical circulation and
prevailing flow patterns. If the rate at which the moist static energy (cpT +
gz + Lq) is advected away from the region is larger than its accumulation rate,
it will not lead to any increase in the rainfall. For the other extreme situa-
tion, when the soil is completely dry, and there is no evaporation from the land,
there may be a reduction in the rainfall due to reduced evaporation. However,

if the heating of the land produces intense low pressure areas which can converge
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moisture from the surrounding oceans, the rainfall may not necessarily decrease,
and if the convergence of moisture is large enough rainfall may even increase.
The mechanism will cease to operate; however, once the rain starts falling
because the soil will not be dry anymore.

Since the net diabatic heatfng of a vertical atmospheric column is maximum
over the tropical land masses (Figures 7a and 7b), it is quite likely that
small fractional changes in these tropical asymmetric heat sources could produce
considerable changes in the planetary scale circulations of the tropical as
well as the extra-tropical atmosphere. Therefore, in spite of relatively
smaller earth surface area being covered by land, soil moisture effects could
be as important as SST anomaly effects. It should be noted, however, that the
soil moisture effects strongly depend upon the season and latitude because
during the winter season in high latitudes, solar radiation reaching the ground
is not large enough to be important for surface energy budget. We summarize
here the results of two numerical experiments, carried out by Shukla and Mintz
(1982) which have demonstrated that evaporation from land can significantly

affect the rainfall over land.

2.2,1. Influence of global dry-soil and wet-soil on atmospheric circulation

We have carried out two 60 day integrations of the GLAS climate model: in
one case, there is no evaporation from the land surface ("dry-soil" case} and
in the other case the evaporation from the land is equal to the model calculated
potential evapotranspiration ("wet-soil" case). These two cases are qualita-
tively similar to no vegetation and completely vegetated earth surface. For
simplicity of interpretation of the results, albedo of the soil was not altered
for the two experiments.

Figure 7c¢ shows the global maps of mean July rainfail difference (dry soil-

wet s0il). Over most of the continental regions, with the exception of the
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major monsoon regions, July rainfall for dry-soil case has decreased (by about
40-50%) compared to the wet-soil case. This shows that the evaporation from
the land is an important component of the rainfall over the land. The exception
over India is even more interesting because the solar heating of Tand for dry-
soil produced such intense low pressure and convergence that the loss of moisture
from land evaporation was more than compensated by the increased moisture flux
convergence from the neighboring oceanic region. The increased moisture flux con-
vergence leads to increased heating of the vertical air ;olumn due to the latent
heat of condensation which maintains and intensifies the surface Tow. This
happened prominently for the unique monsoonal circulation over India for which
oceanic moisture was brought in from the ocean by the monsoon current. This
could also occur in several other regions with monsoonal flow patterns but
perhaps the coarse grid resolution of the model could not resolve the local
influence over other regions.

Figure 7d shows the ground temperature difference (dry soil-wet soi])_for
July. Ground temperatures for dry-soil are warmer by more than 20°-30°C, For
the dry-soil case, most of the radiation energy goes to heat the ground and to
increase the sensible heat flux, whereas, for the wet-soil case, most of the radia-
tion energy goes to evaporate the water which can later release the latent heat of
condensation and heat the vertical air-column.

Figure 7e shows the surface pressure difference (dry soil-wet soil) for
July. There are intense low pr;ssure areas over the continents for dry-soil
and the mass removed from over the land is found to produce high pressure areas
over the oceans. The location and the intensity of the high pressure areas
over the oceans are determined by the nature of dynamical circulations, the
most important of which are the mid-latitude stationary wave response to a

highly anomalous diabatic forcing, and the modified Hadley and Walker circulations
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due to changés in the intensity and location of the tropical heat sources.

We have also calculated the natural variability (not shown) of the GLAS
model and it should suffice to say that the changes shown here for dry-soil and
wet-soil afe far too large to be confused with the model variability due to
internal dynamics.

Since the spatially and temporally averaged rainfall over any region
depends upon evaporation {which depends upon soil moisture), and vertical
distribution of the moisture flux convergence {which depends upon the nature
of dynamical circulation, which, in turn is determined by the direct heating
of the ground and vertical distribution of Tatent heat of condensation}, it
is not possible to establish simple universal relationships between soil moisture,
atmospheric circulation and rainfall. Such relationships strongly depend upon
the dynamical circulation in the region under consideration., If the moisture
over land is rapidly advected away to oceans, fit is unlikely that the local
evaporation from land will be an important contributor to the rainfall. On
the other hand, the intensity and life cycle of a tropical disturbance which
moves over land can strongly depend upon the wetness of the ground. It is
therefore necessary to utilize realistic physical models of the earth-atmosphere
system to determine the sensitiviﬁy of climate to fluctuations of soil moisture.
The experiments reported in this study are extreme examples to highlight the
maximum bounds of impact and to show that the importance of soil moisture and
vegetation for rainfall over any particular area should be calculated by
including the combined effects of dynamical circulation and orographic and
;ceanic forcing. It has also been reported that soil moisture boundary forcing
can be an important factor for medium range (5-15 day) forecasting of rainfall

and circulation. (See Mintz (1982) for a review of several numerical experiments.)
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2.3 Surface Albedo.

Charney et al. (1977) had suggested that changes in the surface albedo can
produce significant changes in the local rainfall and atmospheric circulation.
They pointed out that this effect can be especially important in the desert
margin regions of subtropics. Charney et al. used an earlier version of the
GLAS model in which the surface albedo was increased by 30% for the Sahel, the
Thar Desert (India), and the western Great Plains of the U.S. They found that
precipitation over the albedo anomaly regions was reduced by 10-25% within the
first 30 days. An increase in the surface albedo reduced the solar radiation
reaching the ground, which in turn reduced evaporation from the ground. These
reductions in evaporation and cloudiness increased the solar radiation reaching
the ground, thus partly compensating for reduction in solar radiation due to
increased albedo. However, since reduction in the cloudiness also caused
reduction in the long wave radiation emitted back to the surface from the
cloud base, there was a net reduction in the total radiative energy coming to
the ground. This caused a net reduction in evaporation, cloudiness and precipi-
tation. Since these subtropical regions were not affected by large advective
effects, the local changes in radiative and latent heating were accompanied by
dynamical circulations which produced descending motion over the albedo anomaly
regions. As it was pointed out by Charney et al. (1977), the net effect on the
atmospheric circulation due to changes in surface albedo depends upon the relative
magnitude of the time scale for advecting the moist static energy away from the
region and the time scale for its generation by evaporation and convergence.

If the net effect of the change in surface albedo is to reduce the sensible and
latent heating of the air, it will either decrease the low Tevel convergence
and ascending motion or increase the low level divergence and descending motion.

The change in the vertical velocity field in either case will dry the middle
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troposphere and further reduce precipitation. These effects may not operate
in areas of large scale moisture convergence or strong dynamical instabilities;
however, these experiments suggested that it is quite important to give a
realistic prescription of surface albedo for prediction of monthly and seasonal
atmospheric anomalies.

These experiments have been recently repeated by Sud and Fennessy (1982) %
using the present version of the GLAS climate model which has better parameter-
izations for evaporation and sensible heat fluxes. Sud and Fennessy have found
that the results of experiments with the prgsent model support all the conclu-
sions of the earlier studies by Charney et al. An increase in albedo produced
a systematic decrease in rainfall over Sahel and Thar Desert. The only exception
occurred for western Great Plains where the change was not large enough to be

distinguished from the day-to-day variability.

2.3.1, Effect of change in albedo over northeast Brazil.

In addition to the areas chosen by Charney et al., Sud and Fennessy also
examined the effect of change in surface albedo over northeast Brazil. Between
4°S and 24°S, and 32°W and 47.5°W, surface albedo for 10 model grid points was
increased from about 9% to 30%. Figure 7f shows 5 day averages of model simu-
lated total rainfall over northeast Brazil for the anomaly (increased albedo) and
the control run. It is seen that the rainfall for the first 20 days decreases
due to én increase in albedo. For a 5 day period from day 20-25 rainfall in
the anomaly case is more than the control. But again, from day 25-45 rainfall
for the anomaly case is considerably less than that for the control case. Since
rainfall over northeast Brazil is sometimes affected by the penetration of Southern
Hemisphere mid-latitude disturbances, the changes during day 20-25 could be

- attributed to extratropical variability.
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2.4 Snow Cover

About a century ago, Blanford (1884) observed that, "The excessive winter
and spring snowfall in the Himalayas is prejudicial to the subsequent monsoon
rainfall in India." These observations were later substantiated by Walker
(1910). A persistent anomaly of snow cover can affect the meridional tempera-
ture gradient and, therefore, vertical shear of the large scale flow. The
monsoon circulation is characterized by reversal of the normal temperature
gradient beﬁween the equator and 30°N, i.e. during the Asiatic summer monsoon
season, the equator is colder than northern India. An excessive snowfall during
the previous winter and spring season can detay the build-up of the monsoonal
temperature gradients because most of the solar energy will be utilized for
evaporating the snow or for evaporating the soil moisture due to excessive
snow. A weaker meridional temperature gradient between equator and 30°N can
give rise to a delayed and weaker monsoon circulation. No systematic numerical
experiments have been carried out with global GCMs to determine the physical
mechanisms that can affect the atmospheric circulation associated with excessive
snowfail. One reason for lack of such numerical experiments is perhaps the
requirement of a rather long time integration (from one season to the other)
of a global general circulation model. It requires a realistic treatment of
a]bedo as well as surface hydrology because a large and deep snow cover during
winter and spring can keep the soil wet for a longer time in the coming summer,
and this effect must be treated accurately. It is only recently that general
circulation models have shown some success in simulating the seasonal cycle of
the atmosphere, and it is hoped that more systematic studies of various snow
cover feedback mechanisms will be carried out in the coming years.

Hahn and Shukla (1976) found an apparent relationship between Eurasian snow

cover and Indian monsoon rainfall (shown in Figure 8). Large and persistent
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winter snow cover anomalies over Eurasia can produce a colder mid-latitude
troposphere in the following spring which can strengthen the upper level anti-
cyclone, slow its northward movement over India, and give rise to delayed and
weaker monsoon rainfall. Some recent studies by Yeh et al., (1981) have suggested
that Eurasian snow cover anomalies can influence the interannual atmospheric
variability of China.

Namias (1962, 1978) has proposed that positive feedback can occur befween
excessive snow cover on the east coast of North America and quasi-stationary
circulations which can be favorable for producing more snowfall. Since the
natural variability of the mid-latitude atmosphere is quite large, it is difficult
to determine the contribution of snow cover anomalies in-producing mid-latitude
atmospheric anomalies. The possible physical processes which have the potential
to influence the atmospheric circulation due to snow cover anomalies can be
briefly mentioned:

(1) An increase in snow cover increases the albedo, and therefore reduces
the incoming solar radiation. If there are no other feedbacks, this will
produce colder temperatures, and therefore snow cover anomalies will tend to
persist for a Tonger time. This is consistent with the observations of Wiesnet
and Matson (1976) who showed that December snow cover for the Northern Hemisphere
is a very good predictor of snow cover for the following January through March.

(11) Excessive snow cover anomalies in the mid-latitudes can produce anomalous
diabatic heat sources which in turn can produce anomalous stationary wave
patterns which can alter storm tracks and their frequency.

(ii1) Persistent snow cover anomalies can change the components of the heat
balance of the earth's surface. Even after the snow has melted completely, wet
soil can maintain colder surface temperatures for longer periods of time.

(iv) Persistent snow anomalies can produce anomalous meridional temperature

gradients and anomalous vertical wind shears. Snow is also a good insulator,
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and in the presence of deep snow cover, nighttime inversions tend to be much

stronger.
2.5 Sea Ice

Although sea ice fluctuations cover a very small fraction of the earth's
surface, they can produce important changes in the atmospheric circulation over
the polar regions, and for favorable dynamical structure of the large scale flow,
these effects could also propagate to middle and subtropical Tatitudes. The
local effect of sea ice anomalies is very large, because it directly changes the
heat and moisture supply to the atmosphere. There have been several observa-
tional studies to determine possible relationships between sea ice extent and
atmospheric circulation anomalies (for a review of these studies, see Watsh
(1978), and Walsh and Johnson (1978, 1979}). In a numerical experiment conducted
by Herman and Johnson (1979) using the GLAS climate model, it was found that the
sea ice anomalies in the Arctic regions not only affected the local circulation
but they also produced significant differences in middle and subtropical lati-
tudes. More experimentation with simple models and realistic GCMs are needed
to understand the sea ice effects. Since sea ice anomalies, like SST and snow,
also change slowly compared to the atmospheric anomalies they can be prescribed

from observations.

3. PREDICTABILITY OF THE TROPICAL ATMOSPHERE

The tropical atmosphere is potentially more predictab1e than the mid-latitudes
because its planetary scale circulations are dominated by monsoon circulations
which are intrinsically more stable than mid-latitude Rossby regime. Interac-
tion of the large scale overturnings with the tropical disturbances {easterly

waves, depressions, cyclones, etc.) is not strong enough to detract from the
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predictability of the planetary scale circulations. Tropical disturbances are
initiated by barotropic-baroclinic instabilities but their main energy source

is the latent heat of condensation. Although their growth rate is fast and they
are deterministically less predictable, their amplitude equilibration is also
quite rapid and with the exception of hurricanes, they attain only moderate
intensity. The intensity and geographical locations of the planetary scale
circulations are primarily determined by the boundary conditions and not by
synoptic scale disturbances. It is reasonable to assume that fregquency and
tracks of depressions and easterly waves are primarily determined by the location
and intensity of the planetary scales and distribution of SST and soil moisture
fields, It is highly unlikely that the synoptic scale tropical disturbances,
through their interaction with planetary scale disturbances, will drastically
alter the character of large scale tropical circulation. This is in marked
contrast to the case of mid-latitudes where interaction between synoptic scale
instabilities and planetary scale circulations is sufficiently strong so that
baroclinically unstable disturbances can make the large scales unpredictable:
the mid-latitude circulation consists of a continuum of scales whereas tropical
circulation has a clear scale separation in terms of the frequency and the

zonal wavenumber.

Charney and Shukla (1981} have suggested that since large scale monsoon
circulation is stable with respect to dynamic instabilities, and since boundary
conditions exert significant influence on the time averaged monsoon flow, the
monsoon circulation is potentially more predictable than the middle latitude
circulation. This suggestion was made by examining the variability among the
monthly mean (July) circulation of four model runs for which the boundary
conditions were kept identical, but the initial conditions were randomly per-

turbed. It was found that although the observed and the model variabilities
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were comparible for middle and high latitudes, the variability among the four
model runs for the monsoon region was far less than the observed interannual
variability of the atmosphere as a whole. This led to the suggestion that part
of the remaining variabi11ty could be due to the boundary forcings.

We have extended the work of Charney and Shukla (1981) and compared the
model variability for climatological and observed SST anomalies. We have
carried out 45 day integrations of the GLAS climate model for seven different
sets of initial conditions and boundary conditions. In four of these integrations,
the climatological global SST was used. In the remaining three, the observed
SST for 1973, 1974 and 1975 was used between 0-30°N. Figure 9 shows the plots
of zonally averaged values of standard deviations op, op and oy, and ratios
op/op and cp/op as a function of'Iatitude. op Ts the model standard
deviation among predictability integrations (climatological $ST and random
perturbation in initial conditions), op is the model standard deviation for
SST anomalies, and o, is the standard deviation for 10 years of observations.
It is seen that, in agreement with the results of Charney and Shukla, the ratio
og/op is more than two in the tropics and close to one in the middle latitudes.
The new result of this study is that_og {variability due to changes in SST
boundary conditions) lies nearly halfway between ¢y and ap- This suggests
that nearly half of the potentially predictable variability is accounted for by
changes in SST between 0-30°N.

These conclusions are further supported by a more comprehensive study by
Manabe and Hahn (1981), who integrated fhe GFDL spectral climate model for 15
years with prescribed but seasonally varying boundary conditions of SST. Figure
10a (reproduced from Manabe and Hahn (1981)) shows the values of zonally aver-
aged standard deviation of 1000 mb geopotential height for a 15 year model run

(o) and observations (og). We have calculated the ratio (op/op) from the
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two curves of Manabe and Hahn and the ratio is q]so shown in Figure 10a, It is
again seen that the ratio (og/oy) is about two in the near équatoria] regions
and reduces to about one in the middle and high latitudes. Figure 10b (which
is reproduced from Figure 5.10 of Manabe and Hahn) shows the latitude and
height cross sections of interannual variability of geopotential height. It

is seen that the ratio between the observed variability and the model variability
is more than three in the tropical upper troposphere. It should be pointed
out, however, that although SST was not varying from one year to the other for
the 15 year model run, the soil moisture and snow cover were still variable
during different years, and therefore, it is 1likely that part of the simulated
model variability in the tropics, and perhaps even in the middle latitudes,
could be due to the interannual variability of soil moisture and snow cover.

It is reasonable to conclude that although for short and medium range the
tropical atmosphere is less predictable, the time averages (monthly and seasonal
means) for the tropics have more potential predictability. Since there is
sufficient evidence that tropical heat sources can also influence the middle
latitude circulation, it is likely that, even for mid-latitudes, the monthly
means could be potentially predictable due to their interaction with low lati-

tudes.

4, POTENTIAL PREDICTABILITY OF MONTHLY MEANS AS DEDUCED FROM OBSERVATIONS -

As pointed out in the Introduction, the interannual variability of monthly
means is determined by complex interactions between the internal dynamics and
surface boundary forcings. It is therefore difficult to determine their separate
contributions by analysis of observed data. One possible approach is to carry
out controlled numerical experiments described earlier, provided that all the

boundary forcings can be reasonably prescribed.
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Madden (1976) has examined the predictability of monthly mean sea level
pressure over the Northern Hemisphere by comparing the variances of the observed
monthly means with the natural variability of the monthly means. His study
concluded that there are several areas over the Northern Hemisphere for which
the ratio of the above two variances is more than one and therefore there is
potential predictability. However, in Madden's study, the predictable signal
was assumed to be only that part of the variance which is above white noise
for more than 96 day time scales. He further assumed that the boundary
forcings do not contribute to variability for time scales shorter than 96 days.
Since it is well known that changes in boundary forcings can influence atmospheric
fluctuations within 96 days, Madden's results should be considered only as the
lower bound of the estimate of potential predictability of the monthly means of
the atmospheric circulations (Shuk}a; 1983). Moreover, Madden's study does not
address the question of dynamical prediction from an initial state.

Shukla and Gutzler (1983) have carried out an analysis of variance to
compare the interannual variability of 500 mb geopotential height among 15
(1963-77) January months, and variability within each January. It can be hypo-
thesized that if variability among the Januaries of different years is signifi-
cantly larger than that due to the day to day variability within the individual
Januaries, the excess variability could be due to boundary forcings. Since
daily values within the individual Januaries are not independent of each other,
we first calculated the time interval between independent samples which were
used to calculate the effective sample size and effective degrees of freedom,
and then calculated the natural variability of January means.

Figure 1la shows the ratio of the observed variability among the Januaries
of different years and the natural variability. It is seen that the ratio

hetween the two variances is larger than two (in some places, even ]argér than

three) over a substantial part of the Northern Hemisphere. This suggests that



30

the boundary forcings play an important role in determining the interannual
variability of monthly means. As mentioned earlier, these observational studies
also suggest that for time averages (monthly and seasonal means) the tropical
atmosphere is potentially more predictable than the mid-latitude atmosphere.

This suggestion is further supported by a comparison of autocorrelation functions
for the tropics and mid-latitudes. Figure 11lb shows the zonally averaged values
of autocorrelation calculated from 53 years (1925-77) of monthly mean sea level
pressure data over the Northern Hemisphere analyzed by Trenberth and Paolino
(1981), It is seen that the autocorrelation drops off much more sharply for
mid-latitudes than in the tropics. The tropical spectra are redder than the

mid-Tatitude spectra and therefore potentially more predictable.
5. CONCLUSIONS

We have briefly reviewed the physical mechanisms through which boundary
forcings can influence the variability and predictability of monthly means. We
have used a realistic global general circulation model to determine the sensi-
tivity of the model circulation to changes in the boundary conditions of SST,
soil moisture and surface albedo. From these studies it can be concluded that
the slowly varying boundary forcings have the potential to increase the predic-
tability of time averages. It is further suggested that EOrrect specification
of global boundary conditions of SST, soil moisture, surface albedo, sea ice,
and snow is necessary for successful dynamical prediction of monthly means.

Anomalies of slowly varying boundary forcings produce anomalous sources of
heat and moisture which in turn produce significant anomalies of atmospheric
circulation. These effects can be either local in the vicinity of the boundary
anomaly or away from the source if the intervening environment is favorable for
the propagation of Tocal influences. For example, tropical heat sources can

produce significant changes in the extra-tropical circulation,
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1t should be pointed out that the anomalies of SST or soil moisture are
neither necessary nor sufficient to produce changes in the mid-latitude circul-
ation. For example, a warm SST anomaly in tropics can produce a local heat source,
but if it occurs within the band of easterlies, its influence cannot propagate
beyond the zero wind line. Conversely, even in the absence of SST and soil
moisture anomalies, internal dynamics can produce persistent anomalies of preci-
pitation and diabatic heating in the tropics which, under favorable zonal flow,
can affect the mid-latitudes.

The main purpose of the two papers (Shukla (1981) and this paper) was to
examine and establish a physical basis for dynamical prediction of monthly
means. The essential regiurements for_establishing such a basis are to show
that: a) fluctuations of monthly means are larger than can be expected due to
sampling of day-to-day weather changes; b) there are low frequency planetary
scale components of the circulation which remain predictable beyond the imits
of synoptic scale predictability; and, c) influences of the sTowly varying
boundary conditions of SST, soil moisture, snow, sea ice, etc., are large enough
to produce significant and detectable changes in the monthly mean c¢irculations.
In these two papers we have presented observational and numerical evidence
which support the above requirements.

It is hoped that an accurate description of ‘gqlobal boundary forcings can
be obtained on a near-real time basis so that feasibility of experimental pre-

diction of monthly means can be investigated using dynamical models.

ACKNOWLEDGEMENTS

We are grateful to Yale Mintz and Mike Wallace for reading the manuscript
and making many valuable suggestions. We thank Miss Debbie Boyer for typing

the manuscript and Miss Laura Rumburg for drafting the figures.




32

REFERENCES

Baumgartner, H., and E. Reichel, 1975: The world water balance: Mean annual
global continental and maritime precipitation, evaporation and runoff.
(Elsevier, Amsterdam/Oxford/New York, 179 pp and plates.)

Blanford, H. F., 1884: On the connection of the Himalaya snowfall with dry
winds and seasons of droughts in India., Proc. Roy. Soc., London, 37, p. 3.

Charney, J. G., W. J. Quirk, S. Chow, and J. Kornfield, 1977: A comparative
study of the effects of albedo change on drought in semi-arid regions. J.
Atmos. Sci., 34, 1366.

Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon
Dynamics, Cambridge University Press, Editors: Sir James Lighthill and
R. P. Pearce.

Chen, T. C., and J. Shukla, 1983: Diagnostic analysis and spectral energetics
of a blocking event in the GLAS climate model simulation. Mon. Wea. Rev.,
111, 3"22.

Hahn, D., and J. Shukla, 1976: An apparent relationship between Eurasian snow
cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 2461-2463.

Herman, G. F., and W. T. Johnson, 1979: The sensitivity of the general circula-
tion to Arctic Sea ice boundaries: A numerical experiment. Mon. Wea. Rev.,
106, 1649-1664.

Horel, J. D., and J. M., Wallace, 1981: Planetary-scale atmospheric phenomena
associated with the Southern Oscillation., Mon. Wea. Rev., 109, 813-829,

Hoskins, 8. J., and D. J. Karoly, 1981: The steady linear response of a
spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci.,
38, 1179-1196. i

Lambert, S. J., and P. E. Merilees, 1978: A study of planetary wave errors in
a spectral numerical weather prediction model. Atmos. Ocean, 16, 197-211.

Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-
level pressure. Mon. Wea. Rev., 104, 942-952,

Manabe, S., and D. G. Hahn, 1981: Simulation of atmospheric variability.
To be published in Mon. Wea. Rev.

Mintz, Y., 1982: The sensitivity of numerically simulated climates to land-
surface boundary conditions. NASA Tech, Memo. 83985, 81 pp.

Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast
Brazil: Observations, theory and numerical experiments with a General
atmospheric behavior, Proceedings of the International Symposium on Numer-



33

Namias, J., 1962: Influence of abnormal surface heat sources and sinks on
atmospheric behavior. Proceedings of the International Symposium on
Numerical Weather Prediction, pp. 615-629, Meteorol. Soc. of Japan, Tokyo.

Namias, J., 1978: Multiple causes of the North American abnormal winter 1967-
77. Mon. Wea. Rev., 106, 279-295.

Rasmusson, E., and T. Carpenter, 1982: Variations in tropical sea surface
temperature and surface wind fields associated with the Southern Oscilla-
tion/E1 Nino. Mon. Wea. Rev., 110, 354-384.

Shukla, J., 1975: Effect of Arabian sea-surface temperature anomaly on Indian
summer monsoon: A numerical experiment with the GFDL model. J. Atmos.
Sci., 32, 503-511,

Shukla, J., and B. Bangaru, 1979: Effect of a Pacific sea surface temperature
anomaly on the circulation over North America. GARP Publication Series
No. 22, 501-518,

Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci.,
38, 2547-257¢2.

Shukla, J., 1983: Comments on natural variability and predictability. Mon.
Wea. Rev., 111,

Shukla, J., and D, S. Gutzler, 1983: Interannual variability and predictability
of 500 mb geopotential heights over the Northern Hemisphere. Mon. Wea.
Rev., 111,

Shukla, J., and R. Lindzen, 1981: Stationary waves and deterministic predicta-
bility. Presented at the Third Conference on Atmospheric and Oceanic
Waves and Stability, January 19-23, 1981, San Diego, California.

Shukla, J., and Y. Mintz, 1982: The influence of land-surface evapotranspira-
tion on the earth's climate. Science, 214, 1498-1501.

Shukla, J., and J. M, Wallace, 1983: Numerical simulation of the atmospheric
response to equatorial Pacific sea surface temperature anomalies. d.
Atmos. Sci., 40.

Sud, Y., and M. Fennessy, 1982: A numerical simulation study of the influence
of surface-albedo on July circulation in semi-arid regions using the GLAS
GCM. J. of Climatology, 2, 105-125,

Trenberth K. E., and D. A. Paolino, 1981: Characteristic patterns of variability
of sea-level pressure in the Northern Hemisphere. Mon. Wea. Rev., 109,
1169-1189.

Walker, G, R., 1910: Correlations in seasonal variations of weather II. Mem.
Indian Meteor. Dept., 21, 22-45

Walsh, J. E., 1978: Temporal and spatial scales of the Arctic circulation.
Mon. Wea. Rev., 106, 1532-1544,




34

Walsh, J. E., and C., M, Johnson, 1979: An analysis of Arctic Sea ice fluctua-
tions, 1953-77. J. Phys. Oceanogr., 9, 580-591.

Walsh, J. E., and C. M. Johnson, 1979: Interannual atmospheric variability and
associated fluctuations in Arctic Sea ice extent. J. Geophys. Res., 84,
6915-6928,

Washington, W. M., R. M. Chervin, and G. V., Rao, 1977: Effects of a variety of
Indian Ocean surface temperature anomaly patterns on the summer monsoon
circulation: Experiments with the NCAR General Circulation Mode. Pageoph,
115, 1335-1356,

Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea
surface temperature anomalies. J. Atmos. Sci., 38, 554-571,

Wiesnet, D. R., and M, Matson, 1976: A possible forecasting technique for
winter snow cover in the Northern Hemisphere and Eurasia. Mon. Wea. Rev.,
104, 828-835,

Yeh, T.-C., X.-S. Chen, and C.-B. Fu, 1981: The time-lag feedback processes of
large-scale precipitation on the atmospheric circulation and climate--the
air-land interaction. {pre-published manuscript)



(SOIL MOISTURE)

JANUARY

Schematic representation of the atmosphere's lower boundary. Num-
bers denote the percentage of earth surface area covered by different

houndary forcings during January.

Figure la.



LAND
(SOIL MOISTURE)

Figure 1b. Schematic representation of the atmosphere's lower boundary. Num-

bers denote the percentage of earth surface area covered by different
boundary forcings during July.
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Figure 10a. Zonal means of standard deviation of monthly mean 1000 mb geopotential
height (m) for the Dec.-Jan.-Feb. season. Observed distributions
are from Oort and Jenne. The ratio of observed and model standard
deviation is on the left hand side. {from Manabe and Hahn, 1981)



+(1861 “UYRH PUR SQRUBK LIOJL) PIAJISQO
1073109 Speje|nwis :doj  "uOSeas "gI4-°Ue{-°33(Q 3yl JOJ (u) 3ybiay
|eL1u930d0db ueaw A|yjuow JO UOLIRLASP pJEpURLS 3y3 JO UESU leuoz °qQl @4nbLd

S06 09
) _ X
- vivd
2 IN3IDIF4NSNI
g34 ‘Nvr ‘034
S04 09 NOS
: 066
- — 0v6
- L 0£8
] . 089

09

434 ‘NVI ‘030 g3LNdWOo?

3HNSS3d

34NSS3d



Ratio of the variances of observed January mean and the natural

variability of January mean geopotential height at 500 mb.

Figure 1lla.



SEA LEVEL PRESSURE (53 YRS)
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Figure 11b, Zonally averaged autocorrelation at 20°N and 50°N for monthly mean
sea level pressure for the period 1925-77.



