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1. INTRODUCTION

The mathematical equations governing the dynamics of the
atmospheric flows are nonlinear, and the observed structure of the
atmosphere is characterized by horizontal and vertical gradients of wind,
temperature, and moisture that permit hydrodynamical and thermo-
dynamical instabilities to grow. These characteristics of atmospheric
motion are the primary reason for an upper limit on the deterministic
predictability of atmospheric flows. In addition, the equations and the
physical parameterizations used for prediction are not exact, and they
introduce a source of error in predictions made with a model. Even if the
models were perfect, small uncertainties in the initial state can grow due
to the inherent instability of the flow and nonlinear interactions among
motions of different space and time scales. The quantitative upper limit
for deterministic prediction, even for an exact model, is determined by
the growth rates and equilibration of the most dominant instabilities.

During the past three decades there have been several attempts to
estimate the upper limit for deterministic prediction of the instantaneous
state of the atmosphere, to be referred to as the weather. There are some
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conceptual difficulties in arriving at an estimate of upper limit for
deterministic predictability. For example, how does one decide that an
upper limit has been reached? The most common answer to this question
has been that if the differences between two predictions made with
identical models but slightly different initial conditions become equal to
the differences between two randomly chosen weather maps (for the
same time of year), then the upper limit of prediction has been reached.
Even if we accept this as a working definition for the upper limit, we
have yet to define a way of measuring the differences. For example,
should it be the root-mean-square difference between the two maps av-
eraged over all the appropriately scaled variables or correlation coef-
ficients or some other measure of space time variability? It should be
pointed out that the aforesaid working definition of the upper limit
of predictability implicitly assumes that we already have a good knowl-
edge of the climatology of the atmosphere and therefore we do not con-
sider a prediction to be of any value if it does not improve on our
pre-existing knowledge of the climatology. The concept of use-
fulness is, therefore, implicit in this definition, although it does not
follow that the prediction for a range of time equal to the upper limit
as defined above has any practical utility. There have been some attempts
to distinguish between the upper limits of theoretical and practical (useful)
predictability.

In some of the earlier works, predictability was defined by a single
parameter, the growth rate for root-mean-square error over large areas
(one hemisphere or the globe). For example, if the doubling time for the
error in temperature is about 3 days and if the initial error is about 1°C,
assuming a constant growth rate with time, the error will become about
8°C in 9 days. If 8°C is the root-mean-square error between randomly
chosen weather maps, the upper limit will be considered to be 9 days. The
difficulty in defining predictability in terms of growth rate arises mainly
because the growth rate depends on the structure of the initial large-scale
flow and the value of the maximum permissible error strongly depends on
the latitude and season. The growth rate and equilibration also depend on
the variable under consideration.

In this chapter, we shall first review the earlier attempts to determine
the limits of atmospheric predictability. We shall describe the results from
simple models and turbulence theories in Section 2.1, the analog method
in Section 2.2, and results from global general circulation models in
Section 2.3. In Section 3 we shall review the work on predictability of
space-time averages, and in Section 4 we shall review some of the
outstanding problems of predictability. In Section 5 we shall present the
concluding remarks.
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2. CLASSICAL PREDICTABILITY STUDIES

We shall use the words classical predictability studies to refer to those
works during the past 30 years in which an attempt was made to arrive at a
quantitative estimate of the growth rate of an initial error and to determine
the limits of predictability. Such studies have used either simple models of
atmospheric flow or turbulence models or complex models of the general
circulation of the atmosphere with explicit treatments of mechanical and
thermal forcings. Historical records of the atmospheric flows have also
been examined to find naturally occurring analogs and the growth rate of
their initial differences.

2.1. Simple Models

The first such study reported in the literature is the one by Thompson
(1957), who showed, using a simple barotropic model, that the initial
errors tend to grow with time and that the atmospheric flow is not
predictable beyond a week. He emphasized the effects of the scale of
initial error on predictability and commented on the relative merits of
expanding the observational network and improving the models for
weather prediction. It was implicit in his work that the instability of the
atmospheric flow is the main reason for limits on predictability. He also
introduced the concept of the error between two randomly chosen maps
as a convenient upper limit of the error beyond which the flow is
competely unpredictable. He also showed that the zonally averaged flow
is more predictable than the unaveraged flow.

Simple predictability experiments were carried out, serendipitously, by
Lorenz (1963) in connection with his work on numerical integration of a
simplified nonlinear baroclinic model. The motivation for integrating the
model and producing a long-time series was to test the ability of a linear
statistical model to predict the behavior of a hydrodynamical flow using
the data generated by the nonlinear governing equations. However, since
the computing facility available to Lorenz at that time was far inferior to
the present-day personal computers, from time to time he had to re-enter
the solution printed by the machine to continue the integration further.
Since the machine did the computations with an accuracy of six
significant digits, but printed out only three digits, solutions were changed
in the last three digits every time new values were punched in. Lorenz
noticed that if calculations were repeated with such rounding off, the
solutions began to diverge and that for longer integrations they became
quite different.
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Soon thereafter, Lorenz (1965) wrote a comprehensive paper on the
predictability of a 28-variable atmospheric model. He used a two-layer
quasi-geostrophic model having a zonal flow with two north—south modes
and perturbations with three east-west wavelengths each with two
north—south modes in each layer. He showed that the doubling time for
the initial errors strongly depended on the structure of the flow [a
conclusion repeatedly confirmed by the general circulation model (GCM)
experiments and the experience of operational weather prediction] and
that for synoptic-scale observation errors the doubling time may range
from a few days to a few weeks. On the average, the doubling time was
about 4 days. He also noticed that although instantaneous flow patterns
become completely unpredictable after a few days, some properties of the
flow remain predictable much beyond that time. This will suggest some
possibility for predicting space—time averages.

Several investigators (Robinson, 1967; Lilly, 1969; Lorenz, 1969a;
Leith, 1971; Leith and Kraichnan, 1972; Lorenz, 1984) have also used
turbulence models to determine the predictability of an idealized
hydrodynamical flow. These models do not include spherical geometry
and the rotation of the Earth, nor do they include thermal and mechanical
forcing functions and the physical processes of radiation and
condensation. They do, however, provide useful insight into the error
growth characteristics due simply to nonlinear interactions among the
various scales of the fluid motion. These studies necessarily require a
priori assumptions about the spectra of the Kinetic energy of the
atmosphere, and the results are quite sensitive to such assumptions.

Robinson (1967) proposed the idea of a virtual viscosity that would
dissipate eddies of all sizes, but with the time taken for dissipation of a
particular scale (which is a measure of the predictability time for that
scale) depending on the rate at which energy from that scale is transferred
to the scales at which “‘true’’ dissipation takes place. He used a —% power
law for the large-scale atmospheric energy spectrum. Simply stated,
Robinson’s concept of limited predictability is based on an assumption
that eddies get ‘‘diffused” or ‘‘dissipated away’’ in a finite time and
therefore there is no hope for predictions beyond a few days. This line of
reasoning is not consistent with our intuition (based on observations of
the atmosphere) that eddies do not get dissipated but are maintained by
well-defined physical processes, and hence the problem of predictability
is not the nonexistence of eddies, but rather their growth, movement, and
decay, as well as their interactions with other scales of motions.
Robinson’s concept of dissipative time scales seems more appropriate for
determining the time steps for numerical integrations of atmospheric
models rather than for determining the predictability of the atmosphere.
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Lorenz (1969a) (also using a —§ power law for the energy spectrum)
calculated the time taken for each scale of the motion to be totally
unpredictable, defined as the state at which error energy in a given scale
becomes equal to the energy at that scale in the initial prescribed
spectrum. He found that the interactions take place only among the
adjacent scales; however, the error in the smaller scales gets saturated
rather quickly. Even if the synoptic scales were free of any error initially,
errors from the neighboring smaller scales produced errors in synoptic
scales within a day or so. Lorenz further suggested that the predictability
would be increased if the energy spectra had a —3 power law rather than
—%. Leith (1971) and Leith and Kraichnan (1972) used improved turbu-
lence closure approximations and showed that for the two-dimensional
eddy kinetic energy spectrum similar to the one observed in the atmo-
sphere, the doubling time for error was about 2 days.

It is rather interesting that these estimates of error-doubling time are
quite close to the estimates made by current state-of-the-art GCMs and
also the estimates made by Lorenz (1969b) by using analogs in the past
observations of the atmosphere.

In his paper, Lorenz (1984) has shown that the presence of a
moderately strong spectral gap in the mesoscale range of the assumed
energy spectrum will increase the predictability by about 3 more days.
Lorenz’s calculations suggest that the error level at day 1 without the
spectral gap will be about the same as the error at day 4 in the presence of
the spectral gap.

2.2. Observations (Analogs)

Dr. J. Namias once remarked that the analog method of weather
forecasting is as old as the second weather chart. Before the advent of the
statistical and dynamical models for weather prediction, the analog
method was perhaps the most commonly used technique for weather
forecasting. Even now analogs are commonly used to make extend-
ed-range predictions.

Lorenz (1969b, 1973) proposed an ingenious method of studying
classical atmospheric predictability using naturally occurring analogs
from past records of atmospheric observations. He proposed that if it
were possible to find two rather closely resembling atmospheric states,
the rate with which the differences between the two states grow would
give a measure of the classical predictability error growth. He used five
years (1963-1967) of twice-daily height data over the Northern
Hemisphere for the 200-, 500-, and 850-mb surfaces to carry out his search
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for good analogs. He could not find good analogs: the difference (rms
error) between the two states corresponding to his best analog pair was
62% of the error between two randomly chosen states. Lorenz found that
the doubling time for error between these ‘‘mediocre’” analogs was about
8 days. Since the main objective was to find the growth rate of small
errors, Lorenz extrapolated the growth rate for small errors from the
knowledge of the growth rate for large errors. For this he proposed a
quadratic hypothesis for error growth rate that gave a doubling time of 2.5
days for small errors. It is rather remarkable that this estimate of doubling
time is very close to the estimates from the state-of-the-art global general
circulation models. Considering the crudeness of the technique utilized,
the quantitative exactness of this result should be considered as a
combination of Lorenz’s brilliance and serendipity. As Lorenz pointed
out, a cubic hypothesis would have given a doubling time of 5 days, but
the data did not show as good a fit. Lorenz further suggested that the
chances of obtaining really good analogs does not seem to be good even
for larger data sets. However, it may still be worthwhile to process large
data sets once they are available.

Gutzler and Shukla (1984) have analyzed 15 years (1963—-1977) of winter
season daily, 500-mb height observations for the Northern Hemisphere to
search for analogs. They restricted their search to 500 mb only because of
the equivalent barotropic nature of a significant part of the atmospheric
variability. They examined the analogs for the planetary waves and the
synoptic waves separately and also for limited spatial domains. They also
looked for analogs for 5-day-mean maps.

They found that by considering the 15-year data, but only at 500 mb, the
root-mean-square (rms) error between the best pair of analogs was only
about 50% of the rms error between randomly chosen maps. This
percentage error was reduced to 40% if rms error was calculated for the
planetary waves only (zonal wave numbers 0-4), and further reduced to
about 32% for limited regions over the North American and European
sectors. The error doubling time was also reduced for reduced errors
between the analog pairs, indicating thereby a faster growth for smaller
errors. They also examined the accuracy of short-range predictions based
on the best analogs, and in each case, with the exception of synoptic
waves (wave numbers 5-36), such short-range predictions were inferior
to the corresponding persistence forecasts. This was true even for the
5-day-mean circulation maps. Surprisingly, the rms error between the
best pair of 5-day-mean analogs was close to 69% of the error between
two randomly chosen 5-day-mean maps.

In summary, the work of Gutzler and Shukla using natural analogs
supports the last statement of Lorenz’s (1969b) paper, ‘‘Probably we can



PREDICTABILITY 93

gain some additional insight into our problem by processing the largest
sample of data which we can assemble, but we must not expect
miracles.”’

2.3. General Circulation Models

Charney et al. (1966) were the first to apply general circulation models
(GCMs) to the study of the classical predictability of model-simulated
atmospheric circulations. They utilized the three GCMs described by
Smagorinsky (1963), Mintz (1964), and Leith (1965) to examine the growth
rate of initial sinusoidal and random temperature error fields. The results
were highly model dependent; the error growth characteristics were quite
different for each of the models. The Leith model showed a rapid decay of
the initial error for the first 4 days, followed by an error increase to half of
its initial value up to day 7. After day 10, the error began to level off.
Thus, the expected exponential growth of the initial error was not
manifested by the Leith model. The Mintz—Arakawa model showed a
near-exponential growth of error after an initial drop for a few days. The
doubling time of the error was estimated to be about 5 days. The
Mintz—Arakawa results were considered to be the most realistic because
this was the only model that exhibited strong aperiodic behavior during a
long-term (about 300 days) integration of the model and also because the
error growth characteristics were similar to what one could expect from
theoretical considerations. The Smagorinsky model was integrated with
initial random and sinusoidal temperature error fields of various
amplitudes (0.02, 0.1, 0.5, and 2.0 K). For small initial error amplitudes,
the error grew very slowly for the first 30 days, after which it showed a
doubling time of 6 to 7 days. However, the actual flow patterns showed a
primarily periodic behavior. It should be remarked that this large
divergence among the results of various models is merely a reflection of
the fact that none of the models were realistic. Predictability experiments
with state-of-the-art models available today will show more convergent
results.

Later papers on classical predictability studies with GCMs were
reported by Smagorinsky (1969), Jastrow and Halem (1970), and
Williamson and Kasahara (1971). The model used by Smagorinsky was
the improved version of the earlier model described by Miyakoda et al.
(1969) and Manabe et al. (1965). The model used by Jastrow and Halem
was the improved and modified version of the earlier Mintz—Arakawa
model. Williamson and Kasahara (1971) used the model developed at
the National Center for Atmospheric Research (NCAR). One of the
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important conclusions of the Jastrow-Halem and Williamson—-Kasahara
papers was that the growth rate of the initial error depended on the
resolution of the model; error growth was slower for coarse resolution
models.

The most comprehensive study of the classical predictability at that
time was reported by Smagorinsky (1969), presented as the Wexler
memorial lecture at the 49th Annual Meeting of the American
Meteorological Society. For the first time, he raised the question of
predictability of different spectral modes. In fact, perhaps because this
study was so comprehensive (and perhaps because of the reputation of
the author), no major work on classical predictability was published for
the next 12 years, although a large effort was devoted to actual weather
prediction. Smagorinsky presented results of error growth for various
initial error amplitudes using two different model resolutions. For an
initial random error of about 0.25°C, the doubling time was about 2.5
days, but it took about 7 days for the error of 1°C to double to 2°C.
Although the nature of the error growth with time was consistent with the
theoretical concepts of hydrodynamical instabilities, the quantitative
estimate of the growth rate of the error was quite different from the one
suggested by Lorenz, which used simple models or observed analogs.
Lorenz’s estimates for the doubling time of large-scale error fields (as
expected to be for a typical observational network) was about 2 to 3 days,
whereas Smagorinsky’s model results suggested a doubling time of about
5to 7 days. As evidenced by a 800-word footnote in Smagorinsky’s paper,
this difference in the result produced very useful and sharp discussion in
the field. It is now generally agreed that Lorenz’s estimates were quite
close to the present estimates using the current state-of-the-art GCMs.

Recently there has been a renewed interest in classical predictability
studies. Some examples of the recent works are found in papers by
Shukla (1981a), Lorenz (1982), Baumhefner (1984), and Shukla (1984a).
Error growth rates have now been examined separately for the tropics
and mid-latitudes, for winter and summer, for different space scales, for
different hemispheres, and for different initial conditions. In this section,
we shall summarize some conclusions from these studies. In particular,
we shall show the actual results from some of the integrations of the
GLAS climate model. These results are, naturally, model dependent, and
it is quite likely that the results from a different GCM with different
treatments of numerics and physics will give different quantitative results.
We believe, however, that our results on the relative predictability of
winter and summer seasons, tropics and mid-latitudes, Northern and
Southern Hemispheres, and large and small scales and for random and
systematic initial errors will remain unchanged for any GCM that
produces a reasonable simulation of climate and its variability.
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The model used for these predictability studies has been described by
Shukla et al. (1981). It is a global primitive-equation model with nine
levels in the vertical and a horizontal resolution of 4° latitude by 5°
longitude. The model includes parameterizations of radiation,
convection, and fluxes at the Earth—-atmosphere interface. The observed
annual cycle of sea-surface temperature, soil moisture, snow, and sea ice
is prescribed at the model grid points.

We shall present results of 30-day integrations using nine winter initial
conditions and four summer initial conditions. The model was first
integrated with the observed initial conditions of 1 January 1975 (control
run), and then two additional integrations were carried out with random
perturbations in the initial conditions. The rms error between the control
run and the first perturbation run will be referred to as E;;, and the rms
error between the control run and the second perturbation run will be
referred to as Ej,. Similarly, observed initial conditions of 1 January 1977
were integrated along with three perturbations, and rms error between
this control and three perturbations will be referred to as E,;, Ey, and
Ey, respectively. The rms error between a control run starting from the
observed initial conditions of 1 January 1978 and one perturbation run will
be referred to as E3; . For each perturbation run, the statistical properties
of the random perturbation to the initial conditions were the same (a
spatially Gaussian distribution with zero mean and standard deviation of
3 m s~ !in « and v components at all the model grid points and at all the
levels), but the actual grid-point values of the random perturbations were
different for different cases. These integrations were earlier used by
Shukla (1981a) to study the dynamical predictability of monthly means.
Similar integrations were carried out for the summer season by using the
observed initial conditions in the middle of June as control run and three
perturbation runs.

In the past, most attention was paid to the error growth rate (or
doubling time) as the key predictability parameter. This is not a very
useful parameter, partly because it varies greatly for different values of
the error and partly because the ultimate limit of predictability is not only
determined by the growth rate, but also by the saturation value of the
error. This becomes an important consideration when we are examining
the predictability of different seasons and different parts of the globe. We
have, therefore, presented the results for error growth with time, as well
as the ratio of error to the standard deviation of daily fluctuations. A
larger error growth does not necessarily mean lesser predictability
because it will also depend on the equilibration value of the error that
depends on the magnitude of the day-to-day fluctuations.

Figures 1-3 show the results for sea-level pressure, geopotential height
at 500 mb, and wind at 300 mb, respectively. Each figure has four panels,
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which represent the rms error (a) and the ratio of error to standard
deviation (b) for the winter season and similarly (¢) and (d) for the summer
season. The error in panel (a) represents the geometric mean error, the
square root of average value of squares of Ey;, E3, E;,, Ex, E;;, and Esy;
and the standard deviation (STD) used in panel (b) represents the square
root of the sum of squares for all daily values of deviations for all integra-
tions for that season. These figures show the dependence of predictability
on latitude, season, and the weather variable in question.

The main conclusions from the results of the classical predictability
studies described in the preceding section and presented by several other
investigators are summarized in the following subsections.

2.3.1. Predictability of the Tropics and Extratropics. Since the growth
rate and equilibration mechanisms for the tropical and mid-latitude insta-
bilities are quite different, it is desirable to examine their predictability
separately. It is recognized that there is considerable interaction between
the tropics and mid-latitudes. However, since the time scales of growth
and equilibration of synoptic-scale tropical disturbances is much smaller
than that of the tropical-extratropical interactions, we are justified in
examining their predictability separately.

In an earlier paper (Shukla, 1981b), the author has shown that the limit
of deterministic predictability for the tropics is only 3 to 5 days compared
to 2 to 3 weeks for the mid-latitudes. This is because the standard devia-
tion of the day-to-day fluctuations (which is the saturation value of errors)
is much smaller in the tropics and because the instabilities associated with
the growth of the tropical disturbances are driven by moist convection,
leading to larger growth rates than those of the dynamical instabilities of
the mid-latitudes, which are driven by horizontal or vertical wind shear.
Some of the earlier studies on predictability examined only the global or
the hemispheric average rms error, and since the tropical errors are small
in magnitude, results were dominated by the mid-latitude errors. Thus the
results on tropical predictability were overlooked. Figure 4 from Shukla
(1981b) shows the rms error averaged over 10° latitude belts centered at 6,
30, and 58°N for sea-level pressure. The equilibration value of the error is
largest for 58°N and smallest for 6°N, reflecting the latitudinal variability
of the daily standard deviation. It is also seen that the initial growth of
error is the largest for the tropics. Thus, a combination of faster growth
rate and smaller equilibration value makes the tropical regions of the
globe the least predictable for day-to-day weather forecasting. This con-
clusion is not inconsistent with the current experiences in operational
weather forecasting, where it has been found that the skill of tropical
forecasts is not better than that of a persistence forecast, even at day
2 or 3.
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This result is further supported by Figs. 1-3, in which it is seen that for
each variable and each season, although the rms error is quite small in the
tropics, the ratio of rms error to standard deviation is more than 0.5 within
1 to 5 days, whereas it takes about 5 to 12 days to reach that value for the
mid-latitudes. These conclusions are based on an assumption of an ideal-
ized, initial error field over the whole globe. In reality, the observational
network over the tropics is worse than that over the mid-latitudes, and the
prospects for deterministic prediction of day-to-day weather in the tropics
appear to be rather dim. The prospects for predicting space—time aver-
ages, on the other hand, are good. It will be shown in a later section that
partly because of smaller day-to-day variability in the tropics, and partly
because of strong influence of boundary conditions, the space~time aver-
ages are more predictable in the tropics than in the mid-latitudes.

2.3.2. Predictability of the Northern and Southern Hemispheres. In an
article by Louis Purret (1976) in the NOAA magazine Smagorinsky con-
jectured, “‘I would suspect that there is a little less predictability in the
Southern Hemisphere than there is in the Northern Hemisphere.”” Our
results support this conjecture. The equilibration value for the error is

19
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higher in the Northern Hemisphere than in the Southern Hemisphere. The
absence of large, stationary asymmetric boundary forcings in the South-
ern Hemisphere reduced the amplitude and variability of planetary scales,
which in turn reduces the equilibration value of the errors. The possibility
of enhancement of predictability due to the presence of stationary forc-
ings was supported by another study, in which we examined the predict-
ability of the idealized atmosphere of an ocean-covered Earth, and it was
found to be smaller than the predictability of the atmosphere with moun-
tains at the Earth’s surface.

2.3.4. Predictability during the Winter and Summer Seasons. As
shown in Figs. 1-3 and discussed earlier with Shukla (1984a), circulations
during the Northern Hemisphere winter are more predictable than those
during the summer. This provides a good illustration for the point that the
error growth rate alone is not an adequate parameter to describe predict-
ability. Although the error growth rate is higher during winter than in
summer, the day-to-day variability during winter is also considerably
larger than during summer, so that it takes longer for the initial error to
reach its saturation value during the winter season. It should be pointed
out that on the basis of the values of error growth rate alone, Charney et
al. (1966) had erroneously concluded that circulations during the summer
season might be more predictable than those during the winter season.
Results of operational numerical weather prediction are not inconsistent
with the conclusion arrived at by our predictability studies.

2.3.5. Predictability of Planetary and Synoptic Scales. Smagorinsky
(1969) was the first to examine the predictability of different scales sepa-
rately, and he correctly concluded that the larger scales are more predict-
able than the smaller scales. However, it was not clear whether a short
sample of one case could resolve the predictability of various scales. We
examined this question again (Shukla, 1981a) by using six pairs of control
and predictability integrations, and the results are reproduced in Fig. 5. It
is seen that for the latitude belt 40—60°N for 500 mb, predictability of
planetary scales (wave numbers 0-4) is more than 4 weeks compared to
about 2 weeks for synoptic scales (wave numbers 5-12). For wave num-
bers 13-36, predictability was only a few days. It is interesting to note,
however, that the initial growth rate for both the planetary and synoptic
scales is nearly the same. The doubling time of initial small errors is about
2.5 days and once the error has reached a value of about 25 m, the
doubling time is close to 3 days. The higher predictability of the planetary
waves is due to higher values of their amplitude and variability. If the
error growth for the synoptic scales were attributed to the fast-growing
dynamical instabilities at those scales, it will be of interest to determine
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the relative importance of planetary scale instability itself and the influ-
ence of synoptic scales in making the planetary scales unpredictable.

2.3.6. Predictability of High- and Low-Resolution Models. Sma-
gorinsky (1969) compared the error growth for models with two different
resolutions. The low-resolution model had 20 grid points between the
equator and pole, with a grid size of 640 km at the pole and 320 km at the
equator. The high-resolution model had 40 grid points between the equa-
tor and pole. He did not find any significant difference in the doubling time
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for initial errors for high- and low-resolution models, although the persis-
tence error for the high-resolution model was clearly larger than that for
the low-resolution model. Subsequent papers by Jastrow and Halem
(1970) and Williamson and Kasahara (1971) showed that the doubling time
of the error decreased for higher spatial resolution of the model and that
the doubling time for the synoptic-scale errors was closer to 3 days rather
than S days as reported by Smagorinsky.

2.3.7. Predictability of ‘‘Balanced”’ and ‘‘Unbalanced’’ Initial
States. Daley (1980) has shown that the error growth in the rotational
component of the flow could be rather small if the initial error was only in
the gravitational component. This might explain, at least partially, the
faster growth rate of spatially coherent initial errors compared to purely
random errors. In a GCM, through convection and other diabatic pro-
cesses, errors in gravitational component will also soon feed back to the
rotational components.

Besides the question of dynamical balance between the mass and mo-
tion fields, there is also the question of consistency between the observed
initial conditions used as input for a GCM integration and the boundary
conditions of sea-surface temperature (SST), soil moisture, sea ice, snow,
etc., used in the model. It is quite conceivable that this inconsistency can
be an additional source for error growth. However, it can be argued that
in classical predictability studies with GCMs, the errors due to im-
balances in the initial and boundary conditions should not be too large
because of the ‘‘perfect model’”” assumption in which time growth of a
small initial perturbation is examined.

We have attempted to address this question by repeating our predict-
ability error growth calculations for an initial condition that was obtained
after integrating a GCM for 30 days. Figure 6 shows the 500-mb rms error
averaged for 40-60°N for six pairs of integrations during the winter sea-
son. The curves labeled E;;, E,;, and E;; refer to the rms error between a
control run that started from an observed initial condition and a perturba-
tion run. In each case, the control run was extended up to 60 days. At the
end of the 30 days, similar random perturbations were introduced and the
rms error calculated for 15 days. The curves labeled E};, E3;, and E3; in
the lower part of Fig. 6 show the time growth of rms error for the three
cases corresponding to E;,, E;, and Ej3;, respectively. It is quite clear
that the growth rates of error for integrations starting from day 30 of the
control run are smaller than those from the observed initial conditions.
This result suggests that improvements in methods for analysis and initial-
ization hold promise for improvements in short-range weather prediction.
It is difficult to determine whether the above reduction in the error growth
was due to a better balance between the mass and motion fields (i.e.,
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reductions in the gravitational component of the flow) or due to reduc-
tions in the inconsistency between the atmospheric flow and the under-
lying boundary conditions.

2.3.8. Dependence of Predictability on the Structure of Large-Scale
Flow. Since the nature of error growth is determined by the nature of the
dominant instabilities, which in turn depends on the dynamical structure
of the flow fields, it is natural to expect that different initial conditions will
show different predictability characteristics. Figure 6 shows the time se-
ries for the error field for six different pairs of control and predictability
integrations. The random perturbation in the initial conditions had the
same statistics (zero mean and standard deviation of 3 m s~! for « and v
components) for all the cases. The curves labeled £, E,;, and E;, refer to
three different initial conditions. It is clearly seen that the error growth
rate depends on the initial conditions. It is therefore natural to expect
that, for this reason alone, the skill of numerical weather prediction will
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not be the same on each day, although in operational forecasting the
quality and quantity of input observations could also vary from one day to
the other.

2.3.9. Dependence of Predictability on the Structure and Magnitude of
the Initial Error. Figure 6 also shows the effects of structure of the initial
error field on predictability. For example, the curves labeled E;;, E», and
E,; not only had identical planetary- and synoptic-scale flow, but even the
statistics of the random perturbation to the initial conditions were the
same. The only differences were the actual grid-point values of the ran-
dom error, and that was sufficient to produce differences in the rate of
error growth. This again provides at least a partial explantation for the
day-to-day changes in the skill of operational numerical weather pre-
diction.

In another set of experiments, we smoothed the initial random error
over the oceans, corresponding to the assumption that oceanic errors are
more systematic than those over land, which can be assumed to be mostly
instrumental and therefore random. The magnitudes of the individual
grid-point values were adjusted to keep the standard deviation of the error
field the same as that for the globally random error. We found that the
growth rate for spatially coherent initial error was larger than that for the
random initial error. These results raise some interesting questions about
the relative virtues of possible observing systems with uniform but large
error over the whole globe compared to the existing system of relatively
smaller error over the land and larger errors over the oceans.

The dependence of error growth rate on the size of the error itself was
well recognized from the earlier pioneering works of Lorenz (1969a) and
Smagorinsky (1969). Lorenz had shown that very small errors confined to
very small scales grow much faster than larger errors at larger scales.
Smagorinsky had also shown that the smaller the error, the faster the
growth rate. There is a smallest scale that can be resolved by a GCM, and
GCM calculations can address the question of error growth only for scales
larger than that. In earlier predictability studies by Shukla (1981b, 1984a),
it was found that the doubling time for tropical errors was quite large. This
was merely a manifestation of the fact that the error over the tropics had
almost reached their saturation value, and there was no possibility for the
error to double again. For example, an initial rms error of 1°C in
temperature, of 3 mb in sea-level pressure (Jastrow and Halem, 1970),
was already comparable to the saturation value of the error in the tropics.

2.3.10. Predictability of Different Variables. Figures 1-3 show the
results for predictability of sea-level pressure, geopotential height, and
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wind field, respectively. Since these fields are dynamically coupled,
it is reasonable to see small differences in predictability character-
istics for different variables, especially in the mid-latitudes where the
dynamical coupling is quite strong. However, in the tropics the mass
and motion fields are not strongly coupled, and in relation to the
mid-latitudes, the day-to-day changes in sea-level pressure and tempera-
ture are quite small compared to the wind field. Following the criteria
of error growth and error equilibration, the wind field in the tropics
seems to be a little more predictable than the pressure or temperature
field.

We had carried out similar predictability calculations for rainfall for the
four summer runs reported by Charney and Shukla (1977) and Shukla
(1981b), and we found that deterministic predictability for rainfall was
even smaller than that for the circulation variables.

Lorenz (1982) has examined the 10-day forecasts produced by the Eu-
ropean Centre model for 100 consecutive days and has calculated error
growth between model integrations starting from consecutive days. As-
suming that the analyzed fields on two consecutive days do not differ
greatly, the rms error between two integrations will give estimates of
error growth similar to the ones obtained in the classical predictability
studies. While the doubling time for the smallest observed error of 25 m
was about 3.5 days, Lorenz estimated the doubling time for small errors
to be about 2.5 days. He further introduced empirical methods for
improving the forecast error, but the improvement in forecast was
also accompanied with a decrease in the doubling time for the small
errors.

In this paper, Lorenz introduced the concept of lower and upper
bounds on predictability. The lower bound on predictability refers to the
minimum accuracy with which forecasts can be made, and the upper
bound on predictability refers to the maximum error for forecasts at a
given range. The performance of the current operational numerical
weather prediction (NWP) models, therefore, gives an estimate of the
lower bound of predictability (i.e., there is a possibility of doing better
than that), while classical predictability studies give an estimate of the
upper bound on predictability (i.e., we cannot do better than that). Im-
provements in NWP models and observing systems will lead to a larger
lower bound and a smaller upper bound on predictability.

Lorenz estimated the lower and upper bounds on predictability for the
European Centre model and estimated that even without further improve-
ments in 1-day forecast, 10-day forecasts as good as the present 7-day
forecasts can be made. The range of predictability could be further ex-
tended by 2 more days by halving the 1-day forecast error.
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3. PREDICTABILITY OF SPACE-TIME AVERAGES

It has generally been recognized that although the upper limit for
prediction of instantaneous weather lies somewhere between 1 and 3
weeks, space—time averages of weather elements could be predicted for
periods beyond this limit. During the last 5 to 10 years, a large body of
observational and numerical modeling works have been reported that
have collectively established a physical basis for dynamical prediction of
monthly and seasonal averages. In the following sections, we shall
present a brief review of the recent work and several remaining
outstanding problems that need to be addressed.

We shall first describe the mechanisms for the variability of monthly
and seasonal averages and then examine the potential for their predicta-
bility. A convenient conceptual framework to describe the mechanisms of
variability is afforded by the following two categories (Shukla, 1981a): (1)
internal dynamics and (2) boundary forcings.

(1) Internal dynamics: Even if there were no changes in the external
forcing functions and even if the boundary conditions at the Earth’s
surface were constant, there will be changes in day-to-day weather and in
monthly and seasonal averages. These will occur due to the combined
effects of dynamical instabilities and nonlinear interactions among
different scales of motions, the interaction of fluctuating zonal winds with
quasi-stationary mechanical and thermal forcings, etc. Monthly and
seasonal averages can be made different by sampling different segments
of this evolving nonperiodic flow. We shall further describe the
predictability of internal dynamics in Subsection 3.1.

(2) Boundary forcings: Slowly varying boundary forcings due to
anomalies of sea-surface temperature, soil moisture, sea ice, snow, etc.,
can produce anomalous sources and sinks of heating and moisture that
can influence the amplitudes and phases of planetary-scale waves, which,
in turn, can change the location, intensity, and frequency of synoptic-
scale disturbances. Since we shall confine our discussion only to the
monthly and seasonal time scales, we shall not consider the external
forcings due to fluctuations in solar or other extraterrestrial energy
sources.

There has been considerable interest in determining the relative
importance of the internal dynamics and boundary forcings for the
observed interannual variability of monthly or seasonal averages. Due to
the strong coupling between the internal dynamics and boundary forcing
mechanisms, it is not possible to determine their relative roles by
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analyzing observed data without making some drastic assumptions about
the role of one or the other [see, for example, the paper and
correspondence by Madden. 1976; Shukla, 1983a; Madden, 1983]. One
possible way to gain some insight into the problem is by idealized numeri-
cal experiments with GCMs, which can be integrated with and without
boundary condition anomalies. Intercomparison between such integra-
tions can suggest the possible role of the boundary conditions. Some
attempts have been made in this direction (Charney and Shukla, 1977,
1981; Lau, 1981), but the conclusions remain questionable because they
were based on comparison of numerical simulations with actual observa-
tions of the atmosphere, rather than on the comparison of two simulations
(with and without the anomalous boundary forcing) from the same model.
If model simulations without the changing boundary conditions can pro-
duce variances comparable to the observations, there is no justification to
conclude that the boundary conditions are not important because internal
dynamics can be overemphasized in such a hypothetical simulation.
Numerical experiments with several GCMs have been carried out to
determine the influence of boundary forcings due to regional anomalies of
SST or soil moisture, etc., and they suggest an important role of boundary
forcings for interannual variability of monthly and seasonal averages.

3.1. Dynamical Predictability

Since monthly and seasonal average anomalies are primarily
determined by low-frequency, planetary-scale flow patterns, predict-
ability of planetary waves will crucially determine the predictability
of space—time averages. Predictability of planetary scales can be limited
either by the instabilities at their own scale or by their interactions with
highly unstable synoptic scales. If the growth and decay of the planetary
waves were completely determined by their interactions with the synoptic
scales, there will be no real hope for predictions beyond the limits of
deterministic predictability. However, there is no evidence that that is the
case for the atmospheric flows. A quantitative determination of the role of
synoptic scales in the evolution and equilibration of planetary scales is
quite essential to realize the potentials of dynamical predictability.

Dynamical predictability of monthly means was investigated by the
author using the GLAS climate model (Shukla, 1981a). The model was
integrated for 60 days with three different observed initial conditions
during three different years. These were supposed to represent large
differences in the initial conditions. Six additional 60-day integrations
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were made after changing the observed initial conditions by superposition
of random perturbations with root mean square of 3 m s™! in » and v
components. These were supposed to represent small differences in the
initial conditions. It was hypothesized that for a given averaging period, if
the rms error among the time averages predicted from largely different
(observed) initial conditions became comparable to the rms error among
time averages predicted from small differences (random perturbations) in
the initial conditions, the time averages would be considered to be
unpredictable. It was found that the variances among the first 30-day
means for largely different initial conditions were significantly different
from the variances due to random perturbations, and it was concluded
that the first 30-day means were dynamically predictable. It was also
found that the next 30-day means (days 31-60) were not dynamically
predictable. It has been pointed out by Dr. Y. Hayashi of the Geophysical
Fluid Dynamics Laboratory (GFDL) (personal communications) that
based on analysis of variance presented in our paper, it is not appropriate
to declare the lack of predictability for second 30-day means, and the
possibility remains that even the second 30-day means could be dynami-
cally predictable. This was an idealized study, in the spirit of classical
predictability studies for day-to-day weather prediction, and actual fore-
cast experiments must be carried out to determine the predictability of
monthly or seasonal averages.

Miyakoda et al. (1983) have presented an example of a dynamical
prediction for 30 days. This is an excellent illustration for potential of
extended-range, dynamical predictability using advanced models for
dynamics and physics. It is natural to expect that all initial conditions will
not be equally predictable, but even one good example provides
encouragement to pursue it further. There is some indication that the
blocking situations have relatively greater predictability (Bengtsson,
1981).

3.2. Boundary-Forced Predictability

If the changes in the boundary conditions at the Earth’s surface were
able to produce changes in the atmospheric circulation that were large and
coherent enough to be distinguishable from the natural variability of the
internal dynamics, boundary forcings would provide additional potential
for predictability of space-time averages. Based on the correlations
between the observed changes in boundary conditions, atmospheric
circulation, and rainfall and also on GCM sensitivity studies with
prescribed changes in the boundary conditions, it has been suggested that
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under favorable structures of the large-scale flow and appropriate
locations of the boundary anomaly, significant and predictable changes in
the atmospheric flow can indeed be produced. Changes in the boundary
conditions produce local changes in the surface heat flux and moisture
convergence, which in turn produce deep heat sources that can influence
the remote, as well as the local, circulation.

A summary of several such experiments carried out with the GLAS
climate model has been presented in Shukla (1982, 1984b). Similar
experiments have been, and are being, carried out at several other GCM
groups around the world. However, to our knowledge not a single case of
model integration has been reported in which observed global boundary
conditions of all the slowly varying fields (SST, soil moisture, sea ice,
snow, etc.) were used to integrate the observed initial conditions. We
hope that the encouragement provided by the results from regional
boundary anomalies will lead to study of predictability for global
boundary conditions.

We shall present here, as an illustration, one example of a sensitivity
study with the GLAS climate model using the observed SST anomalies
over tropical Pacific during the winter of 1982-1983 (Fennessy et al.,
1985). In Fig. 7a, the observed SST anomaly during January 1983 was
added to the climatological SST to integrate the model for 60 days. This
integration is referred to as the ‘‘anomaly run,”” and a similar integration
with climatological SST is referred to as the ‘‘control run.”’ Such pairs of
integrations were made for three different initial conditions. The
difference between the anomaly and control runs averaged for three pairs
for the period days 11-60 for precipitation (b) and the rainfall anomaly
calculated from the observed outgoing long-wave radiation for 1982—-1983
winter (c) is also shown in Fig. 7. The outgoing long-wave radiation
anomalies are changed to rainfall anomalies by using empirical relations
developed by Arkin (1983). It is gratifying that the model calculations
have been able to simulate rather well the location as well as intensity of
rainfall anomaly. Similar results were obtained by several other modeling
groups (Liege Colloquium on Hydrodynamics, May 1984) who used
similar SST anomalies, although quantitative differences were found for
different models with different parameterizations of boundary layer and
moist convection.

A comprehensive study of the role of tropical SST anomalies has been
carried out by Lau and Oort (1985) in which they have examined a
15-year integration of the GFDL model, with the observed SST anomalies
over the equatorial Pacific. The results are most remarkable, especially
for the tropics. In the simulation without the SST anomalies (Lau, 1981),
there was no evidence for the planetary-scale seesaw of surface pressure
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referred to as the Southern Oscillation, which is one of the most dominant
modes of the tropical variability; whereas in the simulation with the SST
anomalies, the Southern Oscillation is simulated remarkably well. The
observed correlations between the tropical SST anomalies and mid-lati-
tude circulation is also simulated remarkably well in the 15-year simula-
tion with SST anomalies. These results, combined with some of Philander
and Seigel (1985) and other ocean modeling groups on simulation of the
oceanic circulation and SST that use the prescribed atmospheric wind
stress forcing from the observations, suggest that the predictability of the
coupled ocean—atmosphere system could be larger than the predictability
of the atmosphere alone.

3.3. Prospects for Dynamical Extended-Range Forecasting

A large body of observational, theoretical, and GCM results collec-
tively suggests that there are good prospects for dynamical prediction of
monthly and seasonal averages. Miyakoda ef al., (1983) have already
demonstrated the existence of extended-range predictability. Recent
works by Miyakoda and his group at GFDL has shown that limits of
predictability of time-averaged flow can be further extended by improving
the dynamical model, especially the physical parameterizations of the
model.

The factors that have provided hope for dynamical extended-range
forecasting (DERF) can be summarized as follows:

(1) The planetary scales are more predictable than the synoptic
scales.

(2) Slowly varying boundary conditions at the Earth’s surface can
produce significant and predictable changes in the time-averaged atmo-
spheric circulation.

(3) There exists a reasonable conceptual framework to understand the
structure and evolution of atmospheric variability at medium- and long-
time scales.

(4) Global atmospheric GCMs are now able to simulate well the im-
portant features of the mean and transient components of atmospheric
circulation.

(5) Tropical ocean GCMs are also able to simulate the response of the
prescribed atmospheric forcing reasonably well.

(6) Advances in computer technology, space observations, communi-
cation, and data-processing techniques make it feasible to carry out a
large number of integrations of atmospheric and oceanic GCMs by using
real-time observations of global initial and boundary conditions.
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It is recognized that extended-range integrations with the atmospheric
GCMs still show systematic errors (climate drift), and models must be
continuously improved to reduce the climate drift. However, as
previously suggested by the author (Shukla, 1983b), an appropriate mean
climate drift can be subtracted from the predicted time averages to reduce
the forecasting error.

4, SoOME OUTSTANDING PROBLEMS

Although it is possible to list a very large number of problems that need
to be understood in the general area of predictability, we have chosen to
comment only on the following three problems, which require further
discussion.

4.1. Mean (Climate Drift) and Transient Predictability

Operational numerical weather prediction centers are constantly trying
to improve their day-to-day forecasts by improving the parameterizations
of model physics, increasing the resolution of the model, and improving
the quality of data and data-analysis techniques. One of the important
sources of error has been referred to as the ‘‘systematic error,”” which is
considered to arise mainly due to the ‘‘climate drift”” of the model. The
systematic error is generally defined as the average error for a large
number of forecasts. Wallace et al. (1983) have shown that changes in the
mountain heights (envelope orography) produced clear reductions in the
systematic error. It is quite likely that systematic errors can be further
reduced by changing the diabatic heating and dissipation mechanisms in
the models. Climate drift for NWP models can be diagnosed by making
long-term integrations of the forecast model with appropriate boundary
conditions and comparing the simulated climate with observations.

Systematic errors can also be reduced by statistical corrections to the
forecasts (Faller and Lee, 1975; Lorenz, 1977). These methods have not
been too popular with the operational NWP centers because they do not
provide any physical insight, and although it might reduce the forecast
error, it is not possible to understand either the cause of the error or
reasons for improvement. The general assumption has been that improv-
ing the forecasts by changing the model adds to our understanding,
whereas changing the forecast empirically does not.

Systematic errors of NWP models have been examined mainly for flow
parameters because it is possible to verify against observations. Similar
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analysis of systematic errors for rainfall, cloudiness, and vertical
distributions of heating will be useful for determining the sources of
systematic errors. Based on predictability studies for the tropics and a
limited number of tropical forecasts, it was suggested (Shukla, 1981b) that
systematic errors in tropical heat sources are so large and develop so fast
that short- and medium-range forecasts could be improved by prescribing
the large-scale tropical heat sources rather than calculating them by using
model dynamics and physics. Some recent work at the European Centre
(M. Tiedtke, personal communication) seems to support this conjecture.
The extensive experience of operational numerical weather prediction
and the predictability studies described in an earlier section suggest that
some initial conditions are clearly more predictable than the others.
Assuming that the quality and quantity of data do not change from one
day to the other, and assuming that the model remains the same, the only
factor that remains to be considered to explain the transient behavior
of predictability is the dynamical structure of the initial state. An out-
standing problem in weather forecasting is to identify the important
features of the initial state that might reveal the predictability properties
of the flow. For example, if it were true that in a large number of cases
highly amplified presistent blocking ridges were predictable for longer
periods [as has been suggested by Bengtsson (1981)], it will be possible to
attach a higher confidence to a prediction that maintained the initial
amplified blocking ridge. These considerations suggest a need for detailed
synoptic study of predictability. We are not aware of any comprehensive
study of predictability as a function of the synoptic structure of flow. For
example, is it likely that location and intensity of the jet streams,
intertropical convergent zones (ITCZ), or Walker cells could affect
predictability? Although forecasts ultimately degrade either due to
inadequacies of the models or the initial data, if there were significant
relationships among the large-scale features of the initial flow and its
associated predictability, such relationships can be exploited to improve
the operational predictions.
It should be noted that any statistical correction to the forecast based
on past records will be helpful only in reducing the systematic errors and
will not affect the errors that depend on the structure of the initial state.

4.2. Observational Errors and Model Errors

It is rather interesting that the very first paper on predictability
(Thompson, 1957) discussed here was motivated, at least in part, by the
considerations of relative importance of good initial data and good models
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for weather forecasting. This question is equally, if not more, valid today
as it was about three decades ago. During the past 10 years, there has
been a large increase in the use of observations from satellites to define
the initial state for NWP. However, major improvements in short- and
medium-range forecasting appear to have come from better models. Arpe
et al. (1985) have suggested that the observational errors are the dominant
factor only for first 1 to 2 days of the forecast, after which the errors are
dominated by model errors. This is a rather tricky question because
model errors also contribute to the amplification of the initial
observational errors, and we would have no way to know the time taken
for the model-produced errors to become large if there were no
observational errors to start with. Determination of relative roles of
observational and model errors for short- and medium-range forecasting
needs further work.

4.3. Predictability of Predictability

It is well established that there is an upper limit on predictability of
weather. However, it is also evident that within that limit there can be
changes in predictability that depend on the structure of the initial state.
Earlier we discussed the possibility of identifying the important synoptic
features of the flow that might provide some clue to the accuracy of the
forecasts. Some formal procedures have also been suggested (Epstein,
1969; Leith, 1974; Hoffman and Kalnay, 1983) to make a quantita-
tive determination of the reliability of the forecast. Leith (1974) suggested
that instead of one forecast from a given initial condition, several (say
about eight) forecasts from the same initial conditions can be pre-
pared by integrating the model with slightly perturbed initial condi-
tions. Divergence among these various forecasts will be a measure of the
instability of the initial state and therefore a possible measure of the
reliability of the forecast. Hoffman and Kalnay (1983) suggested that
rather than perturbing the initial state (either randomly or systematically),
forecasts from successively observed initial states can be combined, with
suitable weighting functions, to produce a better forecast and to estimate
the reliability of the forecasts. This suggestion eliminates the need for
additional model integrations because such forecasts are produced rou-
tinely.

If divergence among predictions from slightly different initial condi-
tions were a good measure of the reliability of the predictions, these
methods would provide not only a prediction (average of all integrations)
of the flow, but also a prediction of the predictability of the flow. Although
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these methods have not yet been tried operationally, chances of their
success will remain limited for forecast models with large systematic
errors and climate drift. Persistence of atmospheric flows for several days
may also reduce the advantages of using observed initial conditions dur-
ing that period. For example, forecasts from several initial states within a
2- to 3-day period could be very similar, but each could be very different
from the observations.

An examination of the forecast errors for operational NWP models
suggests a tendency for the persistence of correlation between forecasts
from consecutive days. Since the decorrelation time for the atmospheric
flows is about 5 days, this further suggests that predictability depends on
circulation regime. This also suggests that errors of predictions from
initial conditions in the immediate past can be a useful guide for
predictability on a given day. It should be noted that the statistical
correction techniques that use the error history for a large number of
forecasts in the past will not be able to take into account the transient
nature of predictability. For producing forecasts from a given day, the
current operational NWP methods do not use any information from either
the analyses or the forecasts during the last several days. The only
exception is the use of a short-term forecast as a first guess for the
analysis. Optimal interpolation techniques require the use of spatial
structure functions, which are derived from past data over a much longer
period than the decorrelation time of the atmosphere. Since weather
forecasting is considered to be an initial value problem and since the
prediction equations are highly nonlinear, there is no compelling reason to
use the past history of forecast errors. However, considering the
inadequacies of the models as well as of the observations, it should be
possible to use information on the deficiencies of the forecasts from initial
conditions in the recent past to improve short- and medium-range
forecasts.

5. CONCLUDING REMARKS

There is a complete agreement among scientists that the instantaneous
weather is not predictable at infinite range. In fact, there is no serious
challenge to the statement that the instantaneous weather is not
predictable even beyond 2 to 3 weeks. As implied by the work of Lorenz
(1982), it may be convenient to discuss the predictability at day 1 and at
days beyond day 1 separately. Lorenz has shown that even if we could
not improve predictions at day 1, there is potential for improving
predictions beyond day 1. There is little room for disagreement on this
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point. However, the question of predictability at day 1 needs more
discussion. Is it possible to make significant reductions in the current
1-day forecast errors? Lorenz’s work implies that it is highly unlikely.
The argument is as follows: There are, and there always will be, scales of
motion unresolved by the NWP models, and even if there were no errors
in the resolved scales, the errors of the unresolved scales would quickly
make the resolved scales unpredictable. The underlying assumption is
that by a reduction in the grid size of the model and by the introduction of
more sophisticated and complex physical processes, the growth rates of
errors will be increased, and therefore forecast errors at day 1 will remain
nearly same as that for the current models. We are not quite sure about
the validity of these conjectures because there is no evidence that the
current 1-day forecast errors are mainly due to the unresolved scales. In
fact, there is some evidence to the contrary, viz., that the current 1-day
forecast errors are also due to errors in the observations at the synoptic
scales. It does not appear to be unreasonable to expect that by improving
the current NWP models and the description of the initial state at the
current resolution, 1-day forecast errors could be reduced without
increasing the growth rate of the error. Estimates of the rates at which the
unresolved scales influence the synoptic scales, and thereby the planetary
scales, have been made only for simple models that do not have forcing
and dissipation mechanisms, and there is no guarantee that these
estimates will hold good for more realistic models of the atmosphere with
well-defined forcing functions.

The lower curves labeled Ej;, E;;, and Ej3; in Fig. 6 suggest that the
growth rate of the initial error can be reduced considerably by improving
the initial conditions and reducing the inconsistency between the initial
conditions and the boundary conditions. In the opinion of this author, we
are not yet at a stage where the problems due to unresolved scales and the
intrinsic instability of the flow are the primary factors contributing to the
forecast error at day 1 or 2. It is not unlikely that the errors in defining the
synoptic and planetary scale itself and in parameterizing the diabatic forc-
ings at the synoptic and planetary scale are the primary reasons for the
short-range operational NWP forecast errors. It is also of interest to note
that the standard deviation of short-range forecast errors does not show
any preferred areas of maxima in the storm track regions, which would
have been expected from the classical predictability arguments of fast
growth rates in those regions.

Recent works on the predictability of space—time averages (Miyakoda,
personal communication) indicate that the prospects for dynamical
long-range forecasting of monthly and seasonal averages are quite good.
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However, this needs to be substantiated by a reasonably large number of
actual forecasts.
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