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ABSTRACT

The predictability and variability of a coupled ocean-atmosphere model has been investigated by examining
the growth of small initial perturbations during the evolution of the coupled system. The ocean model is first
integrated in a forced mode for a duration of over 24 years beginning with January 1964 in which wind stress
forcing for each month is prescribed from the observations. This provides surrogate analysis or control run with
which predictions from the coupled model can be initiated and compared. Starting from January 1970 with
each of the next 181 initial states from the control run, a prediction experiment was carried out for a duration
of 36 months each using the fully coupled model. With this large ensemble of prediction experiments, a detailed
analysis of growth of initial error and forecast errors was carried out. The SST forecasts are compared with
observations as well as the control run. The root-mean-square difference between control and forecasts becomes
larger than the standard deviation of the control as well as persistence error in about three months. As a result
of differences between the simulated SST in the control run and observations, the forecasts are forced to have
initial errors that are comparable to the standard deviation of the observations. Some significant systematic
errors in the model are also noted. There is an indication that the forecasts may be improved to some extent
by averaging a few of the most recent available forecasts and removing the known systematic error.

Also carried out is a large ensemble of identical twin experiments, each for a duration of 15 years. In one of
each pair of experiments a small random perturbation is introduced at the initial time in the surface winds.
These experiments have shown that the growth of small initial errors in the coupled model is governed by
processes with two well-separated time scales. The fast time scale process introduces errors that have a doubling
time of about 5 months, while the slow time scale process introduces errors that have a typical doubling time
of about 15 months. The existence of a slow time scale gives us optimism about long-range forecasts of ENSO-
type events. However, the fast growth rate tends to saturate at a level that is comparable to the climatological
standard deviation. Thus, a key to long-range forecasting of ENSO-type events may lie in the ability to identify
those initial states that are not too sensitive to the processes associated with fast growth rate.

The diagnostic anatysis shows that the first three empirical orthogonal functions (EOF) of the observed wind
stress together explain only about 36% of the total variance. Although the observed wind stress has considerable
amplitude in the higher EOFs, it is shown that only the first three components are important for forcing the
observed interannual variations using this model. The atmospheric component of the coupled model is not
able to simulate these large-scale components of the observed wind stress accurately. This is partly because the
atmospheric model is mainly driven by the underlying sea surface temperature anomalies (SSTA) and partly
due to the structural differences between the SSTA simulated by the model and the observed SSTA. Thus, a
combination of the atmospheric component’s tight coupling to the ocean and the ocean model’s inability to
simulate the SST anomalies correctly seems to be responsible for the rather rapid growth of prediction errors.
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1. Introduction

Following the devastating El Nifio of 1982-83, sev-
eral scientists (Cane et al. 1986; Cane and Zebiak 1988;
Barnett 1984; Inoue and O’Brien 1984; Barnett et al.
1988; Graham et al. 1987) conducted hindcast-forecast
experiments to model past El Nifio events. These stud-
ies indicate that these events could have been predicted
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well in advance. While Barnett ( 1984 ) and Graham et
al. (1987) used purely statistical techniques, Inoue and
O’Brien (1984) used an adiabatic ocean model forced
by observed surface winds prior to the event. On the
other hand, the model used by Cane et al. (1986) was
a full, dynamical-coupled model (Zebiak and Cane
1987). The results of these stuides, especially those of
Cane et al. (1986), Cane and Zebiak (1988), and Bar-
nett et al. (1988), indicating the possibility of skillful
forecasts of these events more than one year in advance,
are highly stimulating. The authors noted that the pre-
dictions made from the boreal winter were the most
successful and those started from spring or early sum-
mer were the least successful. The success of a dynam-
ical model in hindcasting the past four events is very
encouraging. Unfortunately, there has been only a few
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warm events during the past when reasonable initial
condition and verification data could be obtained. The
goal of the present study is twofold. First, a large en-
semble of predictions is examined to obtain a gross
measure of the growth of errors in the (Zebiak and
Cane 1987) coupled model. Standard techniques are
used for verification, such as calculating root-mean-
square error, persistence error, and correlations be-
tween the predictions and verifications. This may not
be the best approach for El Nifio forecasts, but it gives
us a gross measure of the coupled model’s skill. This
part of the study supplements studies done by Cane et
al. (1986) and Cane and Zebiak (1988). Second,
methodology used in classical predictability studies of
the atmosphere is followed to obtain an estimate of
the rate of growth of small initial errors in the coupled
system.

Classical predictability studies (Lorenz 1963, 1965;
Charney et al. 1966; Smagorinsky 1969; and Shukla
1985) have established that the instantaneous state of
the atmosphere cannot be predicted beyond a few
weeks. However, potential predictability of the low fre-
quency component of atmospheric motion (e.g.,
monthly and seasonal means) beyond this limit has
been demonstrated in recent years (Charney and
Shukla 1981; Shukla 1981; Miyakoda et al. 1983; Fen-
nessy et al. 1985). It is argued that the low frequency
component is more predictable because it is mainly
forced by slowly varying boundary conditions. This
concept has received further support from long inte-
grations of general circulation models (GCMs) (Lau
1985; Philander and Lau 1988; Latif et al. 1990). These
experiments have shown that low frequency variability
in the tropical atmosphere at periods on the order of
a year or more is caused not by instabilities of the at-
mospheric circulation but by variations of the lower
boundary condition.

Many simple ocean models such as the linear shal-
low-water model of the tropical Pacific of Busalacchi
and O’Brien (1981), when forced by the observed sur-
face winds, are able to simulate observed sea level
changes in the tropical Pacific quite well. This and other
simple model studies (Seager et al., 1988; Seager 1989,
Bigg and Blundell 1989) and the recent simulation of
the tropical ocean circulation by ocean GCMs (Phi-
lander and Seigel 1985) during the 1982-83 El Nifio
demonstrate that low frequency variability in the trop-
ical ocean is caused primarily by the variation in at-
mospheric forcing and not by instabilities of the mean
ocean currents. In contrast, important aspects of middle
latitude variability, such as the variability in the Gulf
Stream region, are mainly governed by the instabilities
of the mean ocean currents.

Although there exist a large number of predictability
studies for the atmospheric circulation (as noted ear-
lier), hardly any study of the predictability of the ocean
general circulation is found in the literature. In a recent
effort, Carton and Shukla (1990) used a multilevel
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general circulation model of the tropical Atlantic to
perform predictability experiments. They found that
for the same initial condition, errors in wind stress
forcing will produce errors in sea surface temperature
(SST) and ocean circulation that grow to their maxi-
mum value in about three months. On the other hand,
if the same wind stress forcing is applied to quite dif-
ferent initial conditions, the initial errors are found to
decay in about three months. However, more experi-
mentation with similar models is required to establish
the statistical significance of these results.

An empirical study that attempted to address the
predictability of the El Nifio-Southern Oscillation
(ENSO) in a quantitative manner was performed by
Fraedrich (1988). Using annual time series of ENSO
indices, he arrived at a doubling time of small errors
to be one year. The reliability of this estimate is com-
promised, however, by the use of annual mean samples
and a relatively short time series.

The separate model studies of low frequency vari-
ability of the tropical atmosphere and ocean described
above give us some hope that the coupled ocean-at-
mosphere system may have longer range predictability
in the tropics. Because the tropical atmosphere and
ocean are strongly coupled, the predictability of low
frequency variability in the tropics should be addressed
using a coupled model. The present study is one such
attempt to do so.

The following dynamical elements should be taken
into account in developing a conceptual framework
for understanding the predictability of the coupled sys-
tem. We know that the coupled ocean-atmosphere
system sustains certain instabilities that arise purely
from large scale air-sea interaction. Philander et al.
(1984), Yamagata (1985), and Hirst (1986, 1988) have
studied these instabilities in detail. Recently Battisti
(1988), Battisti and Hirst (1989), and Schopf and
Suarez (1988) have proposed that the periodic com-
ponents of the ENSO phenomenon are merely mani-
festations of these instabilities. Briefly, this instability
mechanism may be described as follows. Consider a
modest anomaly in the central equatorial Pacific. The
atmospheric response to this SST anomaly produces a
burst of westerly surface wind anomalies to the west
of the SST anomaly. The oceanic response to the west-
erly wind anomaly produces a downwelling equatorial
Kelvin wave propagating to the east and a upwelling
Rossby wave signal propagating slowly to the west. In-
teracting with the prevailing mean conditions, the
downwelling Kelvin wave signal intensifies the SST
anomaly, thereby further intensifying the westerly wind
anomaly. This positive feedback is the source of the
instability. If there were no mechanism to check the
growth, the SST anomaly would intensify indefinitely.
However, there are at least two mechanisms, one linear
and the other nonlinear, that can stop the growth of
this instability. The former is a delayed oscillator
mechanism related to the equatorial Rossby wave gen-
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erated by the westerly wind anomaly in the central
Pacific. The upwelling Rossby wave propagates to the
west and reflects from the western boundary as an
equatorial upwelling Kelvin wave. When this upwelling
Kelvin wave reaches the instability region in the central
and eastern Pacific it erodes the growth of the SST.
The rate of growth of SST due to the Kelvin wave and
the travel time of the Rossby-Kelvin waves are im-
portant in determining the periodicity of the phenom-
enon. If there were no other mechanisms affecting the
phenomenon, the ENSO would be perfectly periodic
and perfectly predictable, as in the models of Battisti
(1988) and Andersen and McCreary (1985). Battisti
(1988) and Battisti and Hirst (1988) have shown that
the nonlinearities associated with oceanic horizontal
advection do not have a significant effect on this in-
stability. On the other hand, they showed that the non-
linear effects associated with the upwelling process, too,
can check the growth of the instability. These results,
which are somewhat model dependent, suggest that
the nonlinearities associated with ocean dynamics
alone would produce only a regular, predictable oscil-
lation.

This scenario for ENSO events differs in focus from
that proposed by Cane et al. (1986), Cane and Zebiak
(1987), Zebiak and Cane (1987), and Zebiak (1989).
They propose that the changes in the zonal-mean heat
content in the equatorial ocean are responsible for the
transitions from warm to cold phases and vice versa.
According to this hypothesis, the interval between
events 1s the time required by the equatorial heat res-
ervoir to refill. The heat in the ocean is moved around
by ocean dynamics. The ocean dynamics, at least in
part, involve the wave signals in the equatorial regions.
Therefore, the heat content variability could be related
to the wave dynamics described above. Thus, the phys-
ics of the two scenerios may not be different. However,
the mechanism responsible for the aperiodic nature of
the refilling is not clear.

The other nonlinearity in the coupled system arises
through the coupling process. This is partly because
the wind stress forcing of the ocean is a nonlinear func-
tion of the wind anomalies and partly because atmo-
spheric heating is also a nonlinear function of anom-
alies in atmospheric convergence. The predictability
of the coupled model depends on how well one com-
ponent of the model simulates the forcing required for
the other component. The coupling processes translate
the boundary conditions (SST; surface winds) into
these forcings. Being nonlinear, the coupling processes
depend sensitively on initial conditions.

Studies of predictability of the atmospheric low fre-
quency variability (Charney and Shukla 1981; Shukla
1981; Shukla 1985) have addressed time scales of a
month to a season. On the other hand, the low fre-
quency variability of the tropical ocean, such as the
ENSO, has time scales of more than a year. Uncer-
tainties in the atmosphere’s behavior enter the ocean
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through the coupling processes. As the uncertainties in
atmospheric low frequency behavior have relatively
shorter time scales, the predictability of the coupled
system will also depend on the level at which these
uncertainties reach a nonlinear equilibrium and how
this relatively high frequency noise interacts with the
low frequency evolution of the ocean circulation.

In the present study the coupled model developed
by Zebiak and Cane (1987) is used with the standard
set of parameters used by them. Methods used in clas-
sical predictability studies of the atmosphere will be
employed to derive a quantitative estimate of the pre-
dictability of the coupled system. The choice of a model
is based on two criteria. First, the coupled model should
be able to simulate important aspects of interannual
variations in the tropical Pacific realistically. Zebiak
and Cane’s model satisfies this criterion reasonably
well. It is believed that Zebiak and Cane’s model, being
an anomaly model, avoids certain problems of climate
drift associated with coupled GCMs. It is also com-
putationally efficient. Because the model is successful
in simulating several features of the observed ENSO
variability, it seems to contain the essential nonlinearity
and time scale of the system. Because the limits of pre-
dictability of a dynamical system mainly depend on
the intrinsic nonlinearity and time scale of the system,
it is believed that the present results for this particular
model will be more generally relevant.

In section 2, a brief description of the model is given,
and the results of a control experiment are discussed.
Section 3 contains results of a series of forecast exper-
iments and discusses the growth of the forecast errors.
The predictability experiments and the growth of small
initial errors are discussed in section 4. To get some
insight into the dynamics of error growth in the model,
a series of diagnostic studies has been carried out. The
results of these diagnostic studies are discussed in sec-
tion 5. Conclusions of the study are presented in sec-
tion 6.

2. The model and the control experiment

As previously stated, the model by Cane et al. (1986)
and Zebiak and Cane (1987, hereafter referred as ZC)
is used. The standard set of parameters given in ZC is
used. This version of the model, including the clima-
tologies required, was provided for this study by the
authors. Further insight into the thermodynamics of
such a model is provided by Battisti (1988). The
strength of the model lies in its ability to simulate some
of the important features of the observed ENSO vari-
ability, including the irregular recurrence of warm
events. Also the asymmetry between the amplitudes of
the warm and cold events is realistically reproduced.
The weakness of the model is related to the fact that
the positive SST anomalies during a mature warm
event tend to be too confined meridionally, and the
core of the positive anomaly does not move sufficiently
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to the west, as it does in the observations. Moreover,
the model produces large easterly surface wind anom-
alies in the eastern Pacific where none are observed
during a warm event.

To carry out predictability studies with the coupled
model, a dataset representing the true interannual
variations of both the atmosphere and ocean is re-
quired. Ocean circulation data over a long period of
time are not available. Surface wind analyses over the
Pacific are, however, available for a relatively long pe-
riod of time (Barnett 1983; Goldenberg and O’Brien
1981). Therefore, it was chosen to define the inter-
annual variations of the tropical ocean to be given by
forcing the ocean model with the observed wind stress
anomalies, which are based on subjective analyses of
surface winds obtained from ship reports by Golden-
berg and O’Brien (1981). A 1-2-1 filter in time, lon-
gitude, and latitude was applied to the analyzed winds.
To remove an unrealistic trend, the anomalies used
are deviations from averages of the same calendar
month over the previous four years (Cane et al. 1986;
Cane and Zebiak 1987). These analyses were also pro-
vided by Cane and Zebiak and consist of monthly mean
values for the period January 1964-May 1988. The
resolution is 2° X 2°, and the analyzed data extend
29°S-29°N and 126°E-70°W. The control experiment
corresponds to a run in which the ocean model is forced
by these observed wind stress anomalies. Starting with
January 1970, the ocean fields as well as the atmo-
spheric fields produced by the atmospheric model dur-
ing this run (although they were not used to force the
ocean model) are saved once every month. These fields
provide the necessary initial conditions for the predic-
tion experiments to be described in section 3.

The physical domain for the ocean model and the
locations of regions NINO3 (5°S-5°N and 150°-
90°W) and NINO4 (5°S-5°N; 160°E-150°W) are
shown in Fig. 1a. The performance of the ocean model
in simulating the interannual variations is shown in
Fig. 1b, where the NINO3 averaged SST anomalies
(SSTA) simulated by the forced model is compared
with observations from the Climate Analysis Center
(CAC). The model simulates warm events reasonably
well. However, the correlation between the observed
and simulated SSTA is poor during intermediate pe-
riods. The rms error between the observed and sim-
ulated SST is 0.72°C. This is comparable to the stan-
dard deviation (=0.71°C) of the simulated time series,
but is smaller than the standard deviation (=0.92°C)
of the observed sea surface temperature anomaly over
NINO3 region (NINO3 SSTA). This discrepancy be-
tween the model simulation and the observations may
be partly due to the inadequacy of the ocean model
and partly due to the errors in the analysis of wind
stress used as observations.

A modified version of the model, including a more
complete flux parameterization, was used by Seager
(1989) to simulate the total SST variations in the Pa-
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cific. The performance of the model and its deficiencies
are discussed in detail in that study.

Next results from a series of prediction experiments
are presented. Because an adequate data assimilation
system and analysis scheme for the coupled system is
not currently available, the initial conditions for the
prediction experiments will be derived from the control
experiment as in Cane et al. (1986). However, the ver-
ification strategy for these predictions is not obvious.
Forecast errors for SST anomalies shall be presented,
as this is the only oceanic field for which reasonable
observations are available. Also compared are the pre-
dictions with the control simulation because one can
verify all the coupled model variables in that case.
However, the difference between the coupled model
simulation and the control is not strictly the forecast
error. In any case, section 3 shows that this comparison
provides insight towards understanding how small er-
rors grow in the coupled model.

3. The prediction experiments

Each prediction experiment is started with an initial
condition saved once every month during the control
experiment starting with January 1970. The coupled
model then determines the future evolution for a du-
ration of 36 months. This means that the initial con-
ditions for the ocean are model simulations forced by
the observed wind stresses, but during the prediction
period the coupled model evolves as an interacting-
coupled system. In this manner, 181 forecast experi-
ments were carried out for 181 initial conditions cor-
responding to each month during the period January
1970-January 1985.

a. Comparison between control and coupled model
predictions

In this subsection, the manner in which the differ-
ences between the control run forced by observed sur-
face winds and the coupled run grow with time is ex-
amined. The differences between the control and pre-
diction experiments are not, strictly speaking, forecast
errors—they merely represent the differences between
the uncoupled run with observed wind stress forcing
and the coupled model predictions, both starting from
the same initial conditions. It is worth noting that the
control simulation may contain some systematic error
(or deficiencies) of the ocean model. Therefore, a part
of the systematic error in the coupled model originating
from the ocean component is subtracted out when dif-
ferences between the control and the coupled predic-
tions are calculated. This will give some idea about
how the wind stress produced by the coupled model
begins to depart from observations, which are analyses
based mainly on ship reports.

To illustrate the evolution of these predictions,
NINO3 SSTA from the coupled model are shown in
Fig. 2. It shows a variety of dependence of the predic-
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FI1G. 1. (a) The geographical domain for the ocean model and the two regions NINO3 and NINO4. (b)
NINO3 averaged SSTA in the control experiment (dashed curve) versus the observed (solid curve) over the
same region. The rms error and correlation between the two series are shown.

tions on the initial conditions. The model appears to
be successful in capturing the growth phase of some of
the major El Nifio events; however, for many cases a
large warm event is predicted even when there is no
warm event in the control. To further illustrate the
variety of evolution of the predictions, six pairs of sub-
Jectively selected predictions are shown in Fig. 3, each
pair starting from two consecutive months. Figures 3a,b
show that the two predictions in each pair not only
follow each other during their evolution but also follow
the control closely throughout most of the 36 months.
Figures 3c,d show that the two predictions in each pair
follow nearly identical evolutions but diverge signifi-
cantly from the control after about 12 months. On the
other hand, Figs. 3e,f show that the two predictions in
each pair start diverging rapidly from each other within
a couple of months.

The differences between the control and corre-
sponding one-month, three-month, and six-month
predictions of NINO3 SSTA for all the initial condi-
tions are shown in Fig. 4. An examination of these
predictions and the corresponding prediction differ-
ences shows that the one-month differences (Fig. 4a)
remain small for all the initial conditions. However,
the three-month differences (Fig. 4b) tend to become
quite large for some initial conditions. The standard
deviation (SD) of the three-month differences becomes
comparable to the SD of the control NINO3 SSTA.
By six months (Fig. 4c), the differences have become
so large that their SD becomes larger than the SD of
the control NINO3 SSTA. This means that two six-
month predictions made from slightly different initial
conditions diverge as much as two randomly selected
states of the control. Note that the largest differences
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FI1G. 3. Verification of six pairs of subjectively selected predictions of NINO3 SSTA starting from two
consecutive months. The dotted curve is the control in each panel, and the solid and the dashed curves are
two predictions starting from two consecutive months. The starting months are shown as: month-year.

occur for comparisons corresponding to the months
after a warm event. In other words, the largest differ-
ences occur for the initial conditions corresponding to
the peak and decaying months of the warm events.
This is a systematic error of the coupled model. As a
result, the average of the predicted SSTA in Fig. 4 is
always larger than the average of the control SSTA.
The question of systematic errors will be discussed later
in this section.

Let us denote the prediction for any dynamical vari-
able made from the ith initial condition (i =0, 1,- - -,
180; i = 0 corresponding to January 1970) and for the
Jjthmonth (=0, 1,- - -, 36;j = 0 corresponds to the
initial condition itself, which is the control run) as y;.
Let an averaged prediction minus control (P — C) error
(E) for the jth month of prediction be defined as

180

1 1
(P—-C)E; = [m Eo (Vi = Vinjo)?

/2

(1)

Similarly, a persistence error for the jth month of pre-
diction is defined as

1 180 1/2
(PE); = [m > Wy — \Pi,o)z] . (2)
=0

The prediction minus control errors averaged over all
181 predictions and the persistence errors averaged for
all 181 initial conditions for NINO3 SSTA are shown
in Fig. 5a. It also shows the standard deviation of the
control NINO3 SSTA. It should be noted that the pre-
dictions are better than persistence only for the first
three months. Also, the errors become larger than the
natural variability (i.e., the standard deviation) after
three months. The errors tend to saturate by about
nine months. As an alternative measure of the success
of the predictions, the correlations between the pre-
dictions and the verifications from the control are
shown in Fig. 5b. It is seen that the correlation decreases
rapidly to a value of about 0.55 by four months and
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FI1G. 4. Comparison of predictions of NINO3 SSTA with control for all (a) one-month predictions, (b) three-month predictions, and (c)
six-month predictions. Solid curve = control, Dashed curve = predictions, Dotted curve = error ( predictions minus control).

remains somewhat steady until about 12 months. Be-
yond 12 months, the correlation further decreases.

It was noted earlier that the model predictions show
a systematic error, which can be defined as the average
prediction error (mean of all the predictions minus
mean of all the verifications from the control run).
The systematic error of the model is shown in Fig. 6a
by the solid curve. Largest positive bias occurs for a
lag of about 12 months. Whether the prediction skill
could be improved by removing this systematic error
from the predictions was examined. The errors cal-
culated after subtracting the systematic error from the
predictions is shown in Fig. 6a by the dotted curve. It
is seen that the skill of the predictions beyond three
months improves to some extent by this procedure.
However, the errors remain larger than persistence be-
yond three months. The possibility of improving the
skill using a lagged averaged forecast method (Hoffman
and Kalnay 1983) is explored in Fig. 6b. It shows that
if the systematic error is removed and the six predic-
tions initiated from the last six months are averaged,
the predictions improve significantly beyond six
months; however, the error is still higher than the long-
term standard deviation of the control.

So far, error statistics have been discussed by ex-
amining the SSTA over only the NINO3 area. To ex-
amine the character of the growth of errors outside this
region, the RMS errors as measured by the difference
between the control and the predictions averaged over
the whole ocean domain were also calculated. In ad-
dition to the SSTA, the growth of prediction minus
control errors were calculated for three other fields
(thermocline height anomaly, H, and the zonal (u,)
and meridional (v,) component of the surface winds).
Results of these calculations (not shown ) indicate that
the character of the error growth, particularly for the
SSTA, remains the same. For the other variables also,
the errors tend to reach a plateau by about nine months.

Some studies (Battisti et al. 1989; Zebiak and Cane
1987) have indicated that there may be some season-
ality in the growth of errors in the coupled system.
Figure 7 examines the dependence of the prediction
minus control errors of NINO3 SSTA on the initial
conditions corresponding to different months of the
year. In agreement with the results of Zebiak and Cane
(1987), some signature of extended forecast skill is ev-
ident for forecasts starting with initial conditions cor-
responding to September through February. These re-
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FI1G. 5. (a) Rms prediction minus control (P — C) error of NINO3
SSTA using all 181 predictions (solid). The persistence error (dotted )
and standard deviation (dashed) of the control NINO3 SSTA are
also shown. (b) The correlation coefficients (r) between the predictions
and verifications of NINO3 SSTA from the control.

sults are consistent with Battisti (1989b), who argues
that the seasonal changes of the stability of the coupled
system may result in a seasonality in prediction skill.
However, it should be noted that each rms error in
Fig. 7 comes from an ensemble of only 15 predictions.

b. NINO3 SSTA forecast errors

In this subsection, the SSTA forecasts averaged over
the NINO3 area are compared to observations. The
observed SSTA is taken from the analysis of surface
marine temperatures described by Reynolds (1988).
Forecast error is defined in a manner similar to Eq.
(1) where the verifications, ¥;.;,, are now replaced by
the corresponding observations. The root-mean-square
forecast error derived from all 181 forecasts for NINO3
SSTA is shown in Fig 8. Note that there are large errors
in the initial condition itself. This is consistent with
Fig. 1b and is partly due to inaccuracies in the observed
wind stress and partly due to the deficiencies of the
ocean model in correctly simulating the SSTA. The
errors for NINO3 SSTA tend to become larger than
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the standard deviation of the observed NINO3 SSTA
by about four months. The forecast errors remain larger
than the persistence error for nearly the entire period
of forecasts. However, the forecast errors became
smaller than persistence at leads between 9 and 18
months if the systematic error is removed from the
forecasts.

4. Predictability studies

In this section, methods used in classical predict-
ability studies of the atmosphere are adopted to deter-
mine the time scale of growth of small initial errors.
The control run is used to define the initial conditions
for coupled model runs. Following Lorenz (1982) the
growth of error between two coupled model runs for
which initial conditions were only one month apart in
the control run were calculated. These calculations were
repeated for initial conditions being 2, 3, 4,- - 12
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FiG. 6. (a) The systematic error of NINO3 SSTA predictions as
defined by mean of all predictions minus mean of all verifications
(solid). The modified (P — C) errors (dotted) after removing the
systematic error compared with the persistence (dot-dash) and the
standard deviation of the control (dashed). (b) The solid curve is
the lagged averaged errors, from predictions constructed by averaging
the six predictions starting from the last six months. The lagged av-
eraged errors after removing the systematic errors (dotted ), and the
standard deviation (dashed), are also shown.
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FiG. 7. Dependence of rms (P — C) error of individual forecasts on the initial conditions corresponding
to different months of the year (1-12 refer to January-December, respectively). Contour interval is 0.2°C.

months apart in the control run. We also conduct a
series of identical twin experiments with the coupled
model by introducing small random initial perturba-
tions.

The rms growth of initial error corresponding to the
kth month prediction (defined by the difference be-
tween the control and predictions) at the prediction
month j + k is given by

180—k
Epjrk=[ 2 (ijuk — Vien ) /(181 — k)]'?
i=0
withj=0,1,---,36 —kand k=0, 1,- - -, 36.
These quantities calculated from the forecast data
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F1G. 8. NINO3 SSTA forecast errors as compared to observations
(solid). The persistence error (dotted) and the standard deviation of
observed NINO3 SSTA (dashed) are also shown for comparison.

up to a maximum of k = 12 are shown in Fig. 9. The
first curve labeled E; represents the mean growth of
error for all the cases for which the initial error was
equal to the one-month prediction error compared to
control. Similarly, the second curve, E,, represents the
mean growth of error for all cases with initial error
equal to the two-month prediction error compared to
control, and so on. Note that for the first few curves
(representing growth of small initial errors), the error
grows rather rapidly during the first month and then
grows at a much slower rate. It is likely that the rapid
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FIG. 9. Growth of small errors for NINO3 SSTA calculated from
the 181 available predictions. The lowest light curve shows the growth
of mean one-month (P — C) errors. The next higher light curve
shows the growth of mean two-month (P — C) errors and so on. The
heavy envelope corresponds to the error curve in Fig. 5a.



JANUARY 1991

increase of error during the first month is a result of
the uncertainties introduced by the atmospheric pro-
cesses having shorter time scales and faster growth rates.
The slower growth rate during the following months
could be mainly due to the slow coupled process. Also
note that large initial errors tend to evolve in a signif-
icantly different way. In fact, large initial errors cor-
responding to six-month or more prediction errors
compared to control tend to decrease initially and later
increase rapidly. Recall from Fig. 5a that for predictions
beyond three months, the errors are already compa-
rable to the natural variability of the system. When
such large initial errors are introduced into the coupled
system, the system tends to go through an adjustment
process.

To get a quantitative estimate of the growth rate of
small initial errors, one assumes that the equation gov-
erning the growth of error is given by (Dalchar and
Kalnay 1987):

dE/dt = (aE + S)(1 — E/E,) (4)

where « is the growth rate, .S is the amount of error
introduced by model deficiencies, and E,, is the satu-
ration value of the error. Equation (4), is a modified
version of the error growth equation used by Lorenz
(1982). The solution of Eq. (4) was fit to the growth
of one-month prediction errors (E, of Fig. 9). This is
shown in Fig. 10a. It gives a growth rate of & = 0.15
(month)™! or a doubling time of about 4.5 months.

Any initial error, small or large, would finally sat-
urate at a value corresponding to the model’s natural
variability (given by the model’s standard deviation).
The standard deviation of the model’s NINO3 SSTA
(obtained from a relatively long coupled run) is about
1.5°C. 1t is clear from Fig. 9 that although the one-
month prediction error seems to have reached a pla-
teau, it obviously has not reached its final saturation
value during the three-year predictions. Thus, the
growth rate obtained from Fig. 10a may not represent
the whole story. The fact that the one-month prediction
errors remain in a plateau for nearly 1% year indicates
that there may be other processes with different time
scales that are responsible for the larger natural vari-
ability of the system.

To test this speculation and to obtain a more reliable
estimate of the growth rate, a series of identical twin
experiments of sufficiently long duration was carried
out. First, 151 control forecast experiments were con-
ducted, each for a duration of 15 years (180 months).
The 151 different initial conditions for these forecast
experiments were derived from the control experiment.
The range of predictions in these experiments was ex-
tended as it is anticipated that the small errors intro-
duced in them will take longer to reach saturation.
Next, 151 perturbed forecast experiments were con-
ducted. The perturbed forecast experiments were iden-
tical to the control forecasts except for a small random
perturbation introduced at the initial time on the zonal
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(u,) and meridional (v,) components of the surface
winds. The random perturbations have a Gaussian dis-
tribution with zero mean and standard deviation of 0.2
and 0.1 m s™! for perturbations on u, and v,, respec-
tively. The growth of errors averaged over the 151 cases
is shown in Fig. 10b. The initial errors in SSTA in this
case are identically zero, but the small initial errors in
the surface winds introduce small errors in the SSTA
within one month that subsequently grow. As expected,
the smaller initial errors take longer to reach saturation.
Two points are worth noting in Fig. 10b. First, the
error fluctuates around 1.5°C for the last five years.
Thus, it is assumed that the error has reached its sat-
uration value. Second, note that the error growth curve
has two slopes, approximately shown by the dashed
lines in Fig. 10b. This indicates that the growth of errors
in the coupled model is governed by two processes with
two quite different time scales. One of the processes
has a faster growth rate and tends to saturate at around
1°C, and the other has a much slower growth rate. To
obtain some quantitative estimate of the growth rates,
it is assumed that the error growth can be approximated
by a linear combination of two processes, each gov-
erned by a different exponential growth rate. Thus,

E(1) = Ei(t) + Ex(1), (5)
where ,
dE\/dt = (v, E, + $))(1 — E\/E,), (6)
and
dEy/dt = (Ey + $:)(1 — E2/ Ezy).  (7)

As discussed before, oy and «a; represent the two growth
rates, and the total saturation value is given by E
= E| + E3,,. Similarly, S| and S, represent two source
terms arising due to the inadequacies of the model.
Equation (5) is fitted to the error growth curve shown
in Fig. 10b, for which E_, = 1.55. The best fit is obtained
for E,,, = 0.9°C. The fast growth rate is found to be
a; = 0.145 (month)~!, corresponding to a doubling
time of 4.8 months. The slow growth rate is found to
be a; = 0.045 (month) ™!, corresponding to a doubling
time of 15.3 months. The empirical model obtained
this way is shown in Fig. 10c. The success of the model
with the two time scales is rather striking. It is inter-
esting to note that the fast growth rate obtained from
the identical twin experiments is very close to the one
obtained from Fig. 10a by fitting the growth of one-
month prediction errors. This is because, within three
years, the slow process does not affect the error growth
appreciably. The existence of two growth rates is also
seen in the growth of errors in other variables of the
model such as u,, v,, NINO4 SSTA, etc.

It is worth noting that the two time scales associated
with the error growth in the coupled model are some-
what analogous to the different growth rates of errors
for high-frequency synoptic disturbances and low-fre-
quency planetary waves in the atmosphere. The im-
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portant difference seems to be that the two time scales
associated with the error growth in the coupled model
are well separated.

It is interesting to note that the time scale for the
fast growing process is very close to that of the coupled
instability discussed by Philander et al. (1984), Ya-
magata (1985), and Hirst (1986, 1988). As discussed
by Battisti (1988), the dominant ENSO-type variability
in the ZC model is a result of such a coupled instability
and its interaction with the wave dynamics of the
equatorial Pacific. In particular Battisti (1988) noted
that the coupled instability in the ZC model is dynam-
ically similar to the instability in model IV of Hirst
(1986). It is noted that the e-folding time for the fast
error growth (1/0.145 ~ 6.9 months) in the ZC model
(Fig. 10c) corresponds closely to the e-folding time of
about 200 days for the growing mode of Hirst’s model
IV. Even though one needs to take into account the
difference between certain parameters in the ZC model
and Hirst’s model 1V, the correspondence between the
two growth rates is remarkable. This strongly suggests
that the coupled instability in the system could be re-
sponsible for the fast growing part of the error growth.

The slower growth rate can also be related to the
physics of the ZC model as discussed by Battisti (1988,
1989b) and Battisti and Hirst (1989). The wave re-
flection, together with the local instability process, sets
a time scale for the model ENSO cycle that is not per-
turbed by the presence of a small amount of high fre-
quency noise (Battisti 1988). The low frequency be-
havior in the model is dominated by the ENSO cycle
that has a half-period of about two years; this is the
time interval between largest accelerations in the sys-
tem, i.e., the time interval when the system is expected
to be shooting through the unstable equilibrium.
Therefore, one expects the growth rate associated with
this low frequency mode to have an e-folding time be-
tween a quarter-cycle ( ~ 12 months) and a half-cycle
(~24 months). Thus, the growth rate for the slow evo-
lution of errors (1/0.045 ~ 22 months, Fig. 10¢) seems
to be associated with the ENSO-type low-frequency
variability in the model. The model physics dictates
the following zero order classification scheme for pre-
dictability of initial states for the low-frequency ENSO
mode. The basic states prescribed in the coupled model
corresponding to January and February are stable
(Battisti 1988); thus one could expect longer predict-
ability of initial states corresponding to these results.
This is consistent with the results of the prediction ex-
periments (Fig. 7), as well as with the hindcast study
of ENSO events by Cane et al. (1986). The predict-
ability seems to be minimum for initial states corre-
sponding to Northern Hemispheric spring and sum-
mer. This may be partly due to the fact that the basic
states start becoming more and more unstable begin-
ning with the month of April (Battisti 1988). More-
over, the coupling in the model introduces high fre-
quency noice in the system mostly during boreal spring.
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The existence of a high level of high frequency noise
also makes the system less predictable. Similar argu-
ments about the dependence of the predictability of
the low frequency mode on the seasonal cycle were
made earlier by Battisti (1989b).

The existence of a slow time scale in the coupled
system had been intuitively suggested by Cane and Ze-
biak (1988) and has been the basis for their optimism
for the prediction of ENSO events at long lead times.
These results suggest that indeed there is a basis for
optimism for long-range predictability of ENSO events.
However, this success will depend on our ability to
select those initial conditions that are insensitive to the
fast growing instabilities. This conclusion is supported
by the experience of Cane et al. (1986) with their hind-
cast experiments that show that forecasts made from
Northern Hemispheric winter are most successful in
predicting ENSO while those made from boreal spring
are the least successful. As shown by Battisti and Hirst
(1989), the background mean conditions are least un-
stable to the coupled instability during Northern
Hemispheric winter and most unstable during summer.

5. Diagnostic analysis of the error growth

In section 3, it was shown that the RMS difference
between the control and the predictions of the coupled
model becomes larger than the climatological standard
deviation of the control after three months. This time
is longer than the limit on the deterministic predict-
ability of the atmospheric motions but much shorter
than the time scales associated with low frequency
oceanic variability such as the ENSO. It is also noted
from Fig. 5a that the errors during the first three months
of predictions are comparable to persistence errors. The
fact that the predictions of the coupled model become
worse than the persistence forecasts for the SSTA after
three months indicates that the coupled model intro-
duces errors early during the prediction period that
grow to be sufficiently large by three months. In this
section, results from a series of diagnostic studies aimed
at understanding the source of errors in the coupled
model predictions are presented.

The control run was obtained by forcing the ocean
model with the observed surface winds; therefore, in
order that the coupled model produce skillful predic-
tions, the atmospheric component of the model should
be able to produce surface winds compatible with the
observations. Hence, the coupled model predictions
for the zonal component of the surface wind stress (7*)
were compared with observations averaged over
NINO4. The NINO4 area is chosen for this purpose
because the largest wind stresses occur over this region.
This comparison is shown in Fig. 11. It shows that
within one month the amplitude of the prediction er-
rors for 7* becomes as large as that of the observed 7*.
This is further illustrated in Fig. 12, where the growth
of errors of NINO4 7* averaged over all 181 predictions
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is presented. This also shows that the experiment starts
with a one-month prediction error that is larger than
the natural variability of the observed 7*. During sub-
sequent months, the prediction error for 7* grows
slowly. Therefore, it appears that the inability of the
atmospheric model to produce reasonable surface
winds is a major source of error in these predictions.

Having identified the wind stress as an important
source of errors in the coupled model, the structure of
the surface winds produced by the atmospheric model
are further studied and compared with the observa-
tions. This is done by a series of empirical orthogonal
function (EOF) analyses of the various fields. The first
four EOFs of the observed zonal component of the
wind stress anomalies are shown in Fig. 13. The first
two EOFs are asymmetric about the equator. The first
EOF explains only a small fraction of the total variance
(15.7%) and each of the first three EOFs explain com-
parable fractions of the total variance. Thus, the ob-
served stress has considerable variance for higher EOFs.
The structures of the first two EOFs (Fig. 13a,b) agree
well with those calculated by Latif et al. (1990). The
variances explained by the first few EOFs in their study
are much larger because they used observed wind
stresses from which high frequencies (periods less than
16 months) were filtered. Figure 14 shows the first four
EOFs of the zonal component of the surface wind stress
7*m produced by the atmospheric model during the
control experiment. The first EOF here explains a large
fraction of the total variance (84.6%). The other EOFs
explain much smaller fractions of the total variance
compared to the first EOF. In contrast to the structure
of the observed surface winds, the structure of the first
EOF of the model-produced surface winds is symmetric
about the equator in the western Pacific. This inability
of the atmospheric model to produce the correct struc-
ture of the first few EOFs (the asymmetries) is probably
a serious problem in the coupled model.

This inability of the atmospheric model can be at-
tributed to the nature of its response to the underlying
SSTA, which was studied by Zebiak (1986). In the
present case, the first four EOFs of the SSTA from the
control experiment are shown in Fig. 15. The first EOF
of the SSTA corresponds to the mature El Nifio signal
and explains 64.9% of the total variance. The first EOFs
of the SSTA and that of the 7" seem to explain rela-
tively large fractions of the total variance of their re-
spective fields. An illustration of the relationship be-
tween the first EOFs of the two fields is seen in Figs.
16a,b, where the time series of the amplitudes of the
first two EOFs for SSTA and 77 are shown. The time
series of the amplitudes of the first two EOFs of the
zonal component of the observed wind stress (7*) are
shown in Fig. 16¢. Note that the first EOF of the SSTA
and that of 7™ have almost identical variations and
that the second EOFs of both SSTA and 7*" have am-
plitudes much smaller that the first EOFs. These results
suggest that the atmospheric model behaves like a
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F1G. 12. Rms forecast error for the NINO4-averaged zonal
component of the surface stress.

“slave” to the SST variations. This is not unexpected
for this type of model, as suggested by Gill (1985).
However, it is worth noting that the addition of a con-
vergence feedback (Zebiak 1986) also does not seem
to alter this character of the model’s response signifi-
cantly. This indicates that the coupled model simulates
only one possible mode of variability. This point was
also noted by Battisti and Hirst (1989).

It was noted earlier that the El Nifio events simulated
by the coupled model have certain structural differences
with observed El Nifio events (Cane and Zebiak 1987).
For example, the model El Nifio has large positive SST
anomalies still remaining near the eastern boundary
during the peak phase. Moreover, the model’s large
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positive anomalies (say >1°C) do not extend westward
of the date line. Because the atmospheric model is
driven by the SST anomalies, the ocean model’s in-
ability to correctly simulate the structure of El Niflos
introduces errors in simulating the surface winds by
the atmospheric component. In this manner, the ocean
model also contributes to the growth of forecast errors.

Having noted that the observed surface wind stress
has significant variance in the smaller spatial scales of
motion, the question then arises as to which of these
reproduce the basic character of the ENSO-type low
frequency variability in the model and which scales of
motion act like noise. To answer this question, several
sensitivity experiments were conducted. In the first ex-
periment, the ocean model was forced by the part of
the observed surface stress that projects only on the
first EOF of the observed surface stress. In the second
experiment, the ocean model was forced by the part
of the observed surface stress that projects on the first
two EOFs. The third experiment was similar to the
first and second, but with the part of the wind stress
projected on the first three EOFs. The fourth experi-
ment uses the part of the wind stress projected onto
the fourth through tenth EOFs. The time evolution of
the NINO3 SSTA from all four experiments is com-
pared with the observed NINO3 SSTA in Fig. 17. The
RMS error and the correlation coeflicients between the
observed and simulated NINO3 SSTA are also shown
in Fig. 17. It is noted that the rms error decreases and
the correlation increases as the second and the third
EOFs are retained in the wind stress. It is rather inter-
esting that, with only the first three EOFs, the simulated
SST anomalies agree better with observations (rms er-
ror = 0.62°C, correlation = 0.73) than the control (rms
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error = (0.72°C, correlation = 0.64), for which the total
wind stress forcing was retained. In another experiment,
where the first four EOFs were used, the RMS error
and the correlation between the simulated and observed
NINO3 SSTA (not shown in Fig. 17) were found to

be 0.62°C and 0.72, respectively. Thus, the addition
of the fourth EOF to the first three EOFs does not
improve the simulation. If one retained more and more
modes with higher and higher horizontal structures,
one would eventually reproduce the control (Fig. 1).
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FIG. 15. The first four EOFs of the SSTA for the control experiment. Percentage of total variance explained by each
EOF is shown. Contour interval is 0.25 (arbitrary units).
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Therefore, for the dominant interannual variations in
the tropical Pacific, only the three largest scales of mo-
tion in the wind stress variability are needed. In a recent
study, Latif et al. (1990) arrived at a similar conclusion
by forcing their complex ocean GCM by the first two
EOFs of the observed wind stress forcing. The modes
with small horizontal scales in the wind stress essen-
tially act like noise. This is also clear from Fig. 17d. If
the first three modes are removed from the forcing, the
remaining part of the wind stress cannot simulate the
observed interannual variations.

If only the first EOF of the wind stress anomalies is
retained, significant errors occur during the initiation
phase of the warm events (Fig. 17a). The mature phases
of the warm events are, however, well simulated. The
westerly anomalies over the central Pacific associated
with the first EOF of the observed wind stress anomalies
(Fig. 13a) thus appear to be mainly connected with
the response of the atmosphere due to the SSTA as-
sociated with the mature phase of the warm events.
On the other hand, the initiation phase of the warm
events is best simulated if the second and third EOFs
of the observed stress are retained in the wind stress
forcing. This suggests that the westerly wind anomalies
in the south equatorial western Pacific associated with
the second and third EOFs of the observed stress could

be important in initiating the model-simulated warm
events.

6. Summary and conclusions

In this study, an attempt has been made to determine
the limits on the predictability of the coupled ocean-
atmosphere system. This has been done by using the
coupled model of Zebiak and Cane and following the
classical methods developed for atmospheric predict-
ability studies. This model is one of the simplest that
reproduces realistically many of the important features
of the observed interannual variability of SST in the
tropical Pacific Ocean when forced by observed wind
stresses.

To obtain an average measure for the growth of smail
initial errors, a large ensemble of prediction experi-
ments was carried out. Because no reasonable analysis
is available for all the fields, initial conditions for these
prediction experiments were from a model control run
in which the ocean model was forced by the observed
surface winds. A detailed examination of the prediction
errors was done making comparisons with the control
simulation. This has shown that errors become larger
than those of persistence or the long term standard
deviation of the control by about three months. It
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that from the truncated stress experiment are also shown.

should be emphasized, however, that this only gives a
very gross measure of the growth of errors in the cou-
pled model. For the prediction of special events such
as the ENSO, this may not be the correct measure for
prediction skill. In agreement with studies by Cane et
al. (1986), Cane and Zebiak (1987, 1988), and Barnett
et al. (1987), it was found that the predictions starting
in the boreal winter have better skill than those starting
in spring or summer.

Predictability studies have shown that the growth of
small errors in the coupled model is governed by pro-
cesses with two different time scales. The faster time
scale process has an error doubling time of about §

months, while the slower time scale has a doubling
time of about 15 months. The fast time scale process
tends to saturate the error at a level comparable to the
natural variability of the control. As a result, it tends
to put an upper limit on the predictability of the system.
The existence of the slow growing process gives some
reason to believe that, theoretically, the system may
have long-range predictability. However, the key to this
success will depend on the ability to identify initial
conditions that are insensitive to the faster growing
process. It is proposed that the fast error growth results
from the coupled instability in the ZC model, while
the slow error growth is associated with the low fre-
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quency ENSO mode of the system. This is consistent
with recent results (Battisti 1988, 1989b; Battisti and
Hirst 1989) related to the physics of the low frequency
variability of the ZC model.

Diagnosis of the atmospheric model response shows
that it behaves like a slave to the SST anomalies. An
EOF analysis of the surface wind stress produced by
the atmospheric model shows that the first EOF ex-
plains 84.6% of the total variance, while the second
EOF explains 4.4% of the total variance. The smaller
scales explain a small fraction of the total variance. On
the other hand, the first EOF of the observed wind
stress anomalies explains only 15.7% of the total vari-
ance. The second and the third EOFs of the observed
wind stress anomalies explain 11.6% and 8.5%, re-
spectively. Thus, the first three EOFs of the observed
wind stress together explain only 35.8% of the total
variance. A large fraction of the total variance of the
observed wind stress is therefore contained in the
smaller spatial scales. Moreover, the structure of the
largest two EOFs of the model-produced stress is sym-
metric about the equator, while that of the largest two
EOFs of the observed stress is asymmetric about the
equator. This means that the model is not able to pro-
duce the major wind anomalies at and near the equator
correctly. This is probably a major problem with this
model.

Although the observed surface wind stress has con-
siderable signal in the smaller spatial scales of motion,
it is not clear whether the component of the atmo-
spheric forcing at these scales is important for simu-
lating the interannual signal under consideration. Our
sensitivity studies have shown that only a few spatial
components of the observed surface wind forcing are
required to simulate interannual variations. The small-
scale components seem to act as noise and degrade the
simulation when retained in the wind forcing. This ap-
parent lack of impact of the small spatial components
of wind forcing on simulating interannual variations
in the tropics is thought to be an important finding
and increases the hope of enhanced predictability of
the coupled system. Even though most of the variance
of the surface winds produced by the model is con-
tained only in the first few EOFs, the model will do
better if the structure of these EOFs agrees well with
those of the observed surface wind stress.

It has been shown that the atmospheric component
of the coupled model introduces large errors in the
surface winds within one month of the predictions. As
a result, the one-month prediction errors introduced
by the coupled model are already large. These errors
then grow following the instabilities of the coupled sys-
tem. The average one-month prediction error in the
SSTA is on the order of 0.2°C (Fig. 5a). If the model
did not introduce additional errors, this initial error
would grow to be as large as the natural variability of
the control run (SD ~ 0.71°C) in about 12 months.
However, the prediction errors in the coupled model
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become as large as the SD in just three months. This
indicates that the model is introducing additional errors
during subsequent months of the prediction as well.
Certainly, the atmospheric model is responsible for a
part of the one-month prediction error. It appears that
the atmospheric model is also partly responsible for
the additional error during later months of the predic-
tion as it continues to produce errors in the forcing
field. Thus, as the atmospheric model is improved, it
will not only reduce the one-month prediction errors
but will also reduce additional errors during the sub-
sequent months of the predictions. Also noted was that
a part of the error in the surface wind predictions arises
due to the tight coupling of the atmosphere to the SST
anomalies and the ocean model’s inability to simulate
correct SST anomalies.

Finally, the following comment is offered on a di-
rection in which improvements of the coupled model
might proceed. Surely, the atmospheric component of
the model needs improvement. At this point, however,
it is not believed that coupling the oceanic model to
an atmospheric general circulation model (AGCM)
will solve the problem entirely unless systematic errors
of AGCMs are significantly reduced. Limitations of
atmospheric models will put a limit on the predict-
ability of the low-frequency fluctuations of the ocean.
However, for the first time it has been shown that only
a few low-frequency components of the surface wind
stress are required to simulate low frequency oceanic
variability. This suggests that if an atmospheric model
can be developed that is successful in simulating just
this part of the wind stress variability, the coupled
model may be more successful.
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