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1. Introduction
The annual mean rainfail for the global continents is estimated 1o be about 764 mm of which

approximately 40% runs off into the oceans. Assuming no secular trends in the annual mean
global soil moisture, this suggests that the annual and global mean evaporation from the land
surfaces alone is about 60% of the annual and global mean precipitation over the land

(Eagleson, 1991), The percentage is even higher during the local summer and in the tropics.

Some of the evaporated moisture may condense and reprecipitate locally. One region where
this local water cycle is strong is northern South America. Several independent water balance
calculations for the Amazon basin show that approximately 55% of the precipitation there is
accounted for by local evapotranspiration (see Salati and Nobre, 1991 for review), On the
other side hand, about 75% of the precipitation which falls on the basin is reevaparated before
reaching the oceans as runoff (Dickinson, 1991). Figure 1 shows the hydrologic cycle over

the Amazon basin.
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Figure 1. Hydrologic cycle over the Amazon Basin.
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Evaporation from the land surface is a very important camponent of the global water budget
and hydrological cycle. However, it does not nccessa.ri‘ly fotlow thar the water evaporated
from the land is important in determining the rainfall over land. For example, all the water
evaporated from the land could be advected away to the oceans before it recondenses and
rains, In that case it will affect the moisture budget and evaporation only over the oceans,
which in turn will, of course, affect the moisture suppiy for rainfall over the land. In order
that evaporation from the land affects the rainfall over the land, it is necessary that the
prevailing dynamicat circulation be such that the land-evaporated moisture recondenses as rain
before being advected away, This will depend upon the geographical location of the region
under consideration, the prevailing advective velocity, the structure and intensity of the
convergence field, and the vertical distiburion of moist static energy which determines the

nature of the moist convection.

In natwre, the total rainfall averaged over the appropriate space and dme scales is determined
by the combined effects of available and precipitable moisture, and the character and intensity

of the dynamical circulation necessary to lift the moisture for condensation and precipitation,

The roie of soil moisture is twofold. First, it determines the rate of ¢vaporation, and therefore
the moisture supply. Second, it influences the partitiening of incoming radiative energy into
sensible and latent heating. Soil wetness influences the heating of the ground which
determines the sensible heat flux and affects the dynamical circulation by generation or
dissipation of "heat lows". The interaction between the heat lows generated by solar heating
of the ground and the associated circulation and rainfall is further complicated by the fact that
the maintenance and the intensification of the dynamical low is largely influenced by the
latent heat of coﬁdensation. For example, if the soil is saturated with water, and the
evaporation is equal to the potential evaporation, there will be-maximurm possible supply of
moisture to the atmosphere. Whether this will increase the minfall or not will depend upon
the nature of dynamical circulation and its associated flow patterns. If the rate at which muoist
static energy is advected away from thJe region is larger than its accumulation rate, it will not
lead to any increase in rainfall. In the reverse case, it will. For the other extreme situation,
when the soil is complétcly dry and there Is no evaporation from the land, there may be a
reduction in the rainfall, However, if the heating of the land produced intense low pressure
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areas which can converge moisture from the surrounding oceans, the rainfall may not

necessarily decrease, and if the convergence of moisture is large enough it may even increase

the rainfail. This mechanism will cease to operate once the rain siarts falling because the soil

will no longer be dry.

When the soil does contain water, it acts as a shallow, but widespread, reservoir. Compared

with the oceans, it is a highly variable and inconsistent source of moisture for the atmosphere.

. The rate of evaporation depends not only on the availability of moisture in the uppermost

layers of the soil, but on characteristcs of the soil itsclf, the type and distribution of

vegetation rooted in the soil, and ambient conditions in the atrnosphere near the surface of the

garth,

Soil moisture is an important link in two of the principal cycles or feedback loops of the earth
climate system — the water cycle and the energy cycle. Perhaps most apparent is the role
the land surface holds in the hydrelogic cycle. Moisture evaporates from the soil, incrcasing
atmospheric humidity and eventually condensing into clouds where it may precipitate back
onto the earth’s surface. Less obvious is the role seil moisture plays in the energy cycle. The
evaporation of soil moisture constitutes a flux of latent heat into the atmosphere, Thus, the
availability of soil moisture is 2 sirong control on temperature and the partitioning of energy
at the surface. Changes in the energy balance affect aunospheric temperature, and thus, a host

of other components of the climate including evaporation itself.

In this review, we will examine some observational evidence that soil moisture fluctuations
do indeed affect climate over seasonal time scales. A few of the many computer modeling
studies also will be reviewed. Special attention will be given to those studies which explore

the use of soil moisture in the prediction of climate.

2. Observational Studies
In this section we review the observational evidence that soil moisture fluctuations affect

atmospheric circulation and rainfall at seasonal time scales.




2.1 Sensitvity to soil moisture

Although the importance of soil moisture to the generation of precipitation was stated at least
as ewrly as [935 by E. P. Stebbing (Anthes, 1984), Namias (1859, 1960) was perhaps the first
to directly address the problem of soil wetness as a boundary forcing for the atmosphere. He
examined monthly precipitation and temperanre data for the Great Plains of the United States,
The data were seasonally averaged over periods of 60-84 years, depending on availability of
the data. Namias then constructed contingency tables with three categories each (normai,
above normal and below normal). Tables relating summer temperature to both temperature
and precipitation from the antecedent spring show a clear tendency for dry springs to be
followed by hot summers, and wet springs to be followed by cool summers (see Table 1),

Also, & tendency for persistence of anomaious temperatures from spring to summer was

Ty

evident.
Table 1.
Western Plains Subsequent summer temperature
Spring Temp. Precip. Cold Normal Warm Total
~ Cold 101 70 40
Light 29 21 i0 60
Moderate 31 13 19 o7
Heavy 41 3 11 a3
Normal 53 74 81
Light 12 13 34 &4
Moderate 18 33 27 78
Heavy 23 23 19 03
Warm 57 o5 87
Light 9 27 50 86
Moederate 18 22 - 22 62
Heavy 30 16 16 62

trom Narnias (1960)
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Waish et al. (1985) have found that errors in surface temperature forecasis for the United
States during 1947-80 comrelated well to scil moisture anomalies. The mean errors of
temperature vary by 0.5-0.7°C over most of the Great Plains and Rocky Mountains according
to the sign of the anomaly of soil moisture. About half of the 61 stations included in the
study had differences in composited mean specification which were statstically significant at

the 95% confidence level for the summer months when crrors were categorized according to

the sign of the soil moisture anomaly.

Namias (1960) found that for summer precipitation, just as wet/dry springs tend to precede
coolfwarm summers, cool/warm springs precede wet/dry summers (see Table 2), Especially
strong was the tendency for a warm dry spring to usher in a dry summer. Bamston and
Schickedanz (1984) found statistical evidence that on a smaller scale, irrigation may increase

precipitation.  This seems to be especially tue when there was low-level mesoscale

convergence over the irrigated area.

Table 2.
Western Plains Subsequent summer precipitation
Spring temp. Precip. Below Near Above "
normal normal normal
Cold | 53 73 85
Light 12 18 30
Moderate 19 24 25
Heavy 22 - 31 30
Normal 70 73 65
Light 28 17 20
Moderate 27 26 26
Heavy 15 30 19
Warm 87 &3 38
Light 49 22 14
Moderate 24 16 22
Heavy 14 25 22
Based on Narmias (1960) .
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Namias conciuded that, "..moist soil may serve as a_cooling reservoir by using for
vaporization some of the heat normaily associated with the spring to summer building of the
upper level anticyclone...," (Namias, 1959), and “...desiccating warm and dry weather over the
Plains in s;iring provides a healthy environment for the lodgement of the upper level
anticyclone in the following summer," (Namias, 1960). More recently, Namias (1989)
a.r;serted that low springtime soil moisture was a factor in the US di'ought of 1988, and a
recent study by Fennessy and Shukla (1992) supports this possibility. Any effects that soil
moisture would have on the atmosphere should occur at the decay time scale of soil moisture.
This has been found by Vinnikov and Yeserkepova (1991) to be typicaily 2-3 months for a
I m depth of soil. Modeling studies by Carson and Sangster (1981), Rind (1982} and
Delworth and Manabe (1988), among others, have impiied similar decay time scales.

2.2 Soil moisture as a predictor

Namias recognized that soil moisture anomalies could aid in the persistence of
atmospheric circulation anomalies. In particular he examined two case studies (Namias, 1959),
one involving heavy spring rains over Texas, and one drought over the castern United States.
In the first case, it was found that from February through mid-June, statistical predictions of
700 mb height for consecutive two-week periods were consistently too high over the region,
He associated the anomalous trough over the area to the moist soil acting as a cooling
reservoir which impeded the normal building of the summertime upper-level anticyclone in
that area. In the instance of the drought over the eastern seaboard, July surface temperatures
were abnormally high, even though the region was under an area of anomalously low heights
and coid advection at 700 mb.

Can soil moisture be used effectively as a prognostic tool? Karl (1983, 1986) has shown that
soil moisture indices can aid in long-range forecasting, particularly in spring and early
summer. Karl inspected monthly averaged temperature and precipitation for the United States
from 1895-1981. From this he computed the Palmer Drought Severity Index (PDSI) (Karl,
1983), moisture anomaly index Z and water content parameter WC (Karl, 1986). All are
derived from the Palmer Drought Model (Palmer, 1965). The moisture anomaly i_ndex is
where X is a spatially and temporally
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The moisture anomaly index is

Z=(P-PXK,

dependant weighting factor used to standardize the index. P is actual precipitation, and

P=ET+R+RO-L

The circumflex indicates climaticaily appropriate quantities for the existing conditions. ET is

evapotranspiration, R is soil moisture recharge, RO is runoff, and L is monthly soil moisture

loss. The water content parameier is computed as:

wC =W +W, .

where 5 denotes the surface soil layer, and ¥ ig the undertying layer.

Sensitivity tests and contingency tables suggested that there is more persistence in rainfall in

the Rocky Mountain and Great Plains states than in areas where inoist advection from oceans.

d WC correlate to subsequent seasonal temperature better than

is present. Seasonal Z an
This was especiaily true in the continental

straight persistence of seasonal temperature.
interior. Karl decided that PDSI is not 2 good predictor of rainfall, perhaps because PDSI is

not very sensitive to real changes in soil moisture. Z and WC show skill as predictors, but

are still very sensitive to the method of calculating evapotranspiration.

Soil moisture may have usefuiness as a predictor outside the interests of atmospheric science.

Serafini and Sud (1982) developed a model for the calculation of agricultural drought

inception time as a function of soil moisture and atmospheric conditions. They found that for

average July soil moisture conditions, drought inception time for North. Africa, the Middle

East and a large part of western North America was less than 10 days.

Correlation of precipitation with antecedent soil moisture derived from a ground water balance

model was computed by Fennessy and Sud (1983) for 2 40 year period over the United States.

s formulation for evaporation relaton as

Seil moisture was computed using Thornthwaite’

modified by Nappo (1975):
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where £ is precipitation, w and w, are actual and maximum available soil water content, E,
is potential evapotranspiration. The correlation between soil moisture and subsequent
precipitation appeared strongest in the western Great Plains in late summer, The high
correlation in this drought prone region suggested that a feedback mechanism may be partially

responsible for the maintenance of drought.

2.3 Measuring soil moisture

Given its apparent importance, soil moisture has been infrequently and incompietely measured.
An exception to this situation can be found in the Soviet Unien, where soil moisturs has been
routinely measured at hundreds of stations in agricultural areas since the 1930s, and over
natural surfaces since 1967 (Vinnikov and Yeserkepova, 1991). The method currently used
involves removing core samples to a depth of 1.0 to 1.5 m in 10cm segments. Each segtnent

is weighed before and after drying to determine the mass of water contained.

Where widespread direct measurements are not available, soil moisture is often computed from
a water-balance relationship. Rasmusson (1968) computed a hydrolegical budget for North
America which included both atmospheric and Iand branches of the water cycle. He exarnined
North American surface and radiosonde data from 1 May 1958 to 30 April 1963. Surface and
subsurface storage change were computed as:

%.f'um-m

with evapotranspiration estimated by the methods of Thomthwaite ( 1964) or Budyko (1963).
in the above equation anpled brackets indicate spatial average, and overbars indicate time '
average. Using the relation for change in precipitabie water:

W

— = V-0 + (P-ED)
ot )

where V - Q is the water vapor flux divergence, change in so0il moisture can also be

computed without estimating evaporation using the following balance:
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where moisture flux and change in precipitable water can be computed from radiosonde
observations, and runoff computed from river flow. This vapor balance metheod gives an
annual oscilladon in soil moisture two to three times smaller than methods which rely on
evaporation estimates. Rasmusson concluded that computed soil moisture is very sensitive

to the treatment of evapotranspiration, but that over large areas, estimates can be considered

good.

There is promise that ground moisture may also be measurable from space. Wetzel et al.
{1984) attempted to deduce soil moisture by satellite using GOES infrared data. They had
some success inferring seil moisture from mid-moming rate of surface temperature change
with respect to absorbed solar radiation. The method was not applicable when cloud cover
was present, and worked best in dry or marginal agricultural regimes. Microwave brightness
temperatures, as measured by satelfite, can be interpreted to yield soil moisture information
in areas of si)arse vegetation with greater reliability (Sellers et al,, 1990). Goward (1989) has
shown that surface reflectance in the vis—ible!near infrared range can be used to infer surface

soit wetness for some seil types. Again, this methed is only effective where vegetation cover

is scant,

3. Modeling Studies

The connection between soil moisture and the atmosphere is through evaporation. It is
evaporation which is actualty 'imponant to circulation, But the connection between soil
moisture and evaporation is not completely understood, and often not well simulated. Soil
properties, vegetation, and atmospheric conditions all affect evaporation and need to be
considered for any complete simulation. Yet current state-of-the-art models rely on para-

meterizations or simple algorithms to represent this complex process.

Manabe et al, (1965) was the first to incorporate surface hydrology into a general circulation
model (GCM), but the land and ocean surfaces were treated as completely wet with no heat
capacity. Later, Manabe (1969) modified the model to predict soil moisture and snow cover.




This allowed the land surface to provide actual feedback to the armosphere by responding to

precipitation and surface heating, and altering fluxes to the atmosphere accordingly.

For many years, the state-of-the-art treatment of soil moisture was the "bucket” model of
Holloway and Manabe (1971), where the land surface is treated as a grid of reservoirs which
are filled with precipitation, empted by evaporation, and may overflow to produce runoff.
Soil moisture availability drops as the surface dries, making evaporation of the remaining
moisture -— increasingly difficuit. 'I'lus availability was derived by Miyakoda et al, (1979),
and is incorporated with varying structures in numerous studies (see Mintz, 1984 for a

representative review),

Attempts {0 improve upon the bucket model have taken several forms. Variatons which
include rwo or more soil layers have been developed (Deardorff, 1977; Hansen et al., 1983),
and marked improvements to the implementation of the scheme have been realized (Milly,
1992). Meanwhile, some ressarchers have developed complex surface modeis which include
realistic representation and distibution of vegetation, and its effects on fluxes of heat,
moisture and momentum (Rind, 1984; Dickinson et al., 1986; Sellers et al., 1986). Others
have pursued statistical approaches which fall between the two in complexity (Entekhabi and
Eagleson, 1989; Noilhan and Planton, 1989),

3.1 Sensitivity studies

There have been numerous sensitivity studies of soil moisture using numerical models. In the

interest of brevity, only a few of these studies will be reviewed here,

3.1.1 Computing soil moisture

The actual eatment of soil moisture in 2 GCM can 1ake many forms, and the varicus forms
can be compared. Meehl (1984) examined the effects of specified constant soil moisture
versus computed soil moisture. Computed soil moisture led to more realistic seasonal
variation in precipitation, particularly in the opics. Hunt (1985) compared several interactive
methods of parameterizing soil hydrology: the simple bucket mode! of Holloway and Manabe
(1971}, the two-layer formulation of Hansen et al. (1983), and the two-layer method of
Deardorff (1977) which has an extremely shallow (5 mm) upper layer. Deardorff’s
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formulation was found to give the most realistic results. Meehl and washington (1988)

compared the soil moisture sensitivity of two different GCMs with the same bucket soil

representation. It was found that the soil moisture climatologies of the National Center for

¢ Research (NCAR) model and the model of the Geophysical Fluid Dynamics

Atmospheri
due to the differences between the models in the

Laboratory (GFDL) were quite different,

weatment of radiation and other surface propertes.

3.12 Simple models
al channel model o examine soil moisture effects in
0°E 1o 32°E with

¢yclic boundary conditions on the east and west ends. The soil was represented Dy a 15 em
°N, ocean south. ITn Case

Walker & Rowntree (1977) used a tropic
sub-Saharan Africa. The channel spanned 36°N to 16°S, and ran from

bucket model. The simplified surface consisted of land north of
4°N-32°N), and 1G c¢m elsewhere,

dry soil region

1 the soil moisture was initiaily set 10 0 cm in the Sahara (1
In Case 2 soil moisture was inidally 10 ¢m everywhere, In case 1, the

remained dry; in the Sahel region (6°-14°N}, evaporation exceeded precipitatio
—. a drought simation. In Case 2 the Sahara region gradually dried out, but precipitation

the region from the Sahel, which became wetter. After about day 12 precipitation
steady states which reflected the

nby L.4mm d*

spread into
equalled evaporation. The two cases reached different quasi-
persistence of initial soil moisture. This highly simplified system became intransitive.
Gutman (1984) used a zonally averaged steady-state hemispheric annual-mean modet to look
at fixed and computed moisture, which he said was an
biofecdback respectively. In specific latitude bands boundary conditions were chosen 1o
simulate desertification, deforestation, and irrigation.
ed and biofeedback runs. He found that

gave similar responses: reduced absorbed

alogous to running without and with

The boundary anomafies were held

constant in the specified regions in both fix

desertification and deforestation experiments
n with a concomitant increase in adjacent arcas.

radiation, evapotranspiration and precipitatio
ack produced changes in latitude belts adjacent

Irrigation had the opposite effect. Biofeedb:

1o anomalics which were of the same order of magnitude as the changes produced by the
does not change sign of

anomalies themselves. Gutman concluded that biofeedback

precipitadon réspansc in regions adjacent to anomalies, but can either amplify o moderate the

change. In this simple model, perturbations do not modify climate enough to allow continued

persistence. A non-stationary modet would be needed to swdy evotution of changes.




3.1.3 GCMs with global anomalies i

Shukia and Mintz (1982) performed two summer integratons with extreme soil moisture
conditions - one with perpetually saturated ground and one with perpetuaily dry ground,
Significant differences in the global patterns of surface pressure, surface temperature and
precipitation were found. As shown in Figure 2, precipitation was greatly reduced and surface
temperatures increased as much as 30°C in the dry soil case as compared to the wet soil case.
The orly region where precipitation was enhanced was over the monsoon region of southemn

Asia,
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Figure 2. Difference in precipitation for wet minus dry soil cases (Shukla and Mintz, 1982),
Units are mm d°',

Suarez & Arakawa repeated this experiment with the UCLA GCM (Mintz, 1984). The two
cases were again dry and saturated soil, and day 16-45 averages were examined, They found
that in the wet case, land surface evapotranspiration was 35% higher than that computed by
Shukla and Mintz. Precipitation was nearly .oqual to evaporation over land. In the dry case,
almost no rain feil over the continents, except over central Africa. Moisture convergence
existed over some land areas but did not produce rain. Mintz (1984} conjectured - that
discrepancies with Shukla and Mintz were due to model differences, especially in the
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paramcteﬁzations of the planetary boundary layer and clouds. The UCLA model had fewer

clouds, so surface radiation was stronger and evaporation was larger. The lack of precipitation

in areas of moisture convergence was apparendy due to some of the moisture in the PBL over

land being transferred to the free atmosphere by mixing from an unusually strong diumal

cycle over dry land in the UCLA model.

Carson and Sangster (1981) performed GCM experiments with globally saturated and dry

tial soil moisture conditions in a hucket model. Evidence of the initial anomalies was still
1 reflected the initial

ini
visible in the day 21-50 average precipitation, and some areas stil

anomalies after 200 days.

3.1.4 GCMs with regional anomalies

There have been numerous experiments with regional scale anomalies. Yeh et al. (1984),

using idealized land-sea distributions, found that wet soil moisture anomalies enhanced

precipitation only in the mid-latitudes (which were already Tainy). However, the anomalies

were least persistent in the tropics. This first result has also been found for anomalies over

Europe (Rowntree and Bolton 1978; 1983), Simulations with North American soil moisture
anomalies (Rind, 1992; Oglesby and Erickson, 1989) imply that droughts can be intensified
or prolonged by locally low soil moisture, especially in the interior of the continent. Sud and
Smith (1985) found that reduced soil moisture over india seemed to have no effect on
precipitation. Experiments in other subtropical areas give mixed results (Sud et al., 1982; Sud
and Fennessy, 1984; Kitoh et al, 1988) implying that regional circulation patterns may

overwhelm the forcing of the atmosphere by soil moisture anomalies in some areas.

3.15 Persistence of anomalies

Delworth and Manabe (1988) used a low-resolution GCM to investigate the character of the
persistence of soil moisture anomalies. The GCM used 2 15 em bucket model of hydrology

s were carried out for 50 years. Monthly averages from the integration were
50 year

and integration
subtracted from the global fields of soil moisture and precipitation so that only a

of anomalies remained, It was found that the spectra of precipitation anomalies were
most of the power

to pole, Thus, the

record
nearly white at all latitudes, while the soil moisture spectra were red, with

at very long periods. The redness of the spectra increased from equator




14

relationship between soil moisture and precipitation is very closely approximated by a first-

order Markov process with precipitation as the forcing, and potential evaporation providing

the damping. For their model, half of the variance in soil moisture was at pericds greater than

7.5 menths in the tropics and subtropics (3°S-31°N), over 12 months in the mid-latitudes (31°-
34°N}, and 20 months at high latitudes (54°-76°N). However, the model lacked a diumal

cycle, and some important sources of feedback which may alter the persistence of soil

moisture anomalies, such as interactive cloudiness and the seasonal varfation of potential

transpiration, which is caused by the annual cycle of vegetation.

3.1.0 Biosphere models

. Sensitivity studies, which have attempted to measure GCM response to the inclusion of

vegetation parameterizations, have given tangible if not systematic resuits. Sato et al. (1989}

found that coupling of the Simple Biosphere (SiB) model to a GCM corrected evaporation
errors of bucket hydrology. Henderson-Sellers et al. (1990) found that their Biosphere
Atmosphere Transfer Scheme (BATS) also seemned to reduce some of the gross errors of the
bucket model. In tests of the sensitivity of BATS to various soil characteristics (Wilson et

al,, 1987), sensitivity to soil texture and upper soil layer depth was found to be high.

e SR AR A

Although biosphere models depict the process of evapotranspiration more realistically than
simpler schemes, they do not necessarily improve on simple schemes in ail situations. Also,
the vegetation parameterizations in current biosphers models do not react to anomalies or

trends in climate, and cannot simulate interannual variability in vegstation cover or vigor.

3.2 Prediction

The overwhelming majority of medeling studies have focused on the sensitivity of the
atmospheric response to changes in soil moisture or its formuiation. However, a few have
examined the feasibility of soil moisture as a p:;cdictor of short-term climate, Rind (1982) has
investigated the predictive capability of spring soil moisture with relation to summer
temperatures and precipitation over the United States. In particular, low springtime soil
moisture can be looked upon as a precursor to a hot dry summer. GCM integrations show
that while precipitation is reduced, evaporation is reduced more. Thus, "E minus P decreases
and the soil may recharge, erasing the dry anomaly; This processes limits predictability to

two or three months - more where the prevailing circulation does not advect moisture from

. an oceanic source.
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The mechanism by which soil moisture anomalies may aid development and persistence of
drought in a2 GCM was explored by Oglesby and Erickson (1989). They determined that a
reduction in soil moisture leads to increased surface temperature. The lower atmosphere is
heated and ridging occurs aloft. Low level moisture advection is z controlling factor in
rmaintenance of the drought. The degree to which the model circulation is in equilibrium with

the soil moisture anomaly determines how quickly the anomaly is diminished.

Meehl (1984) found that inclusion of predicted soil moisture increased the accuracy of
monsoon simuiations in the NCAR Community Climate Model. He attributed this to the role
of soil moisture as a positive feedback over intand regions. This result has been confirmed
by Fennessy (perseonal com:ﬁunicaﬁon) in experiments where initial soil wemess over India
is set very high. Rainfall increased over India as compared to a control run. An experiment
with reduced initial soil moisture showed less of a change, but also resulted in increased
rainfall. In this case, increased surface heating may be increasing convergence over India.
This change in circulation concentrates more moisture over India, simifar to what was
observed in the study of Shukla and Mintz (1982) with zero soil moisture.

Fennessy and Shukla (1992) performed a similar experiment in a GCM with interactive soil
moisture and biosphere. Initial soil moisture was set globally to either climatological values
or proxy observed soil wetness derived from the analysis-forecast system of the European
Centre for Medium-Range Weather Forecasting (ECMWF). An ensemble of seascnal model
integrations were initialized from observed atmospheric states on each of the first three ‘days
of June in both 1987 (a non-drought year in central North America)-and 1988 (a severe
drought year). Soil moisture anomalies were highly persistent. Figure 3 shows the 1 June
1988 initial soil wemess anomalies (ECMWTF minus climatology), and the seasonal mean
{(JTA) soil wemess differences between the two simulations. The integrations with ECMWF
initial soil moisture produced a reasonable simulation of 1988 North American drought in both
precipitation and surface temperature anomalies, as compared o integrations with climatologi-
cal initial soil moisture, The simulation of 1988 versus 1987 interannual variability is also

ameliorated by use of the "observed" initial soil wetness.
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Figure 3t 1 Junc 1988 soil wetness anomalies (top} and simulated JYA mean soil wemess differences (bolmml.
Contours are -20, -10, 10, 20, and 40 percent,

In order to use soil moisture as a predictor or indicator of future clirnate anomalies,
accuratesoil moisture measurements must be availaple to initialize the models, and the models
must accurately predict soil moisture. The problems of obtaining comprehensive soil moisture
measurements was discussed earlier. Yang et al, (1992) found that relatively small errors in
initial soil moisture specification can contribute to sizeable short-term errors in surface air
temperature and relative hurnidity, This is because most of the change in maximum diurnal
surface temperature as a function of soil moisture occurs across 4 narrow range of wemesses.
Yang et al. (1991) have developed a method to comect initial soil moisture based on the
computed error of the corresponding surface temperature as predicted by a GCM. Figure 4
shows the mean surface air temperature for the first five days of an ensemble of three
summertime forecasts initialized with uncorrected soil moistures. Errors as greatas 3°C occur
in the semi-arid regions of the western Great Plains. When initial soil moistures are corrected,

erTors are reduced significandy (Figure 5). Root-mean- -square errors also are reduced.
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3.3 Subgrid variability
Recently there has been a great deal of interest in the role of subgrid scale variability of

<t e

surface moisture and vegetation in modeling. A number of ways of addressing the problem
of representing small-scale variety in large grid boxes have been developed. In the SiB
surface model, Dorman and Sellers (1989) use plurality to determine the vegetation and soil

type for an entire grid box. Abramopoulos et al. (1988) use area-weighted means of soil and

e

vegetation parameters in a somewhat simpier surface representation. A gaussian distribution
of subgrid varations of soil moisture and evaporation is used by Wetzel and Chang (1988)
to represent the spottiness of precipitation in wetting a large grid box. Entekhabi and
Eagleson (1989} use an exponential distribution of precipitation and soil moisture. Koster and
- Suarez (1991) have developed a mosaic treatment by which' fluxes are computed for each
vegetation and seil type found within a given grid box using identical upper boundary
conditions. The resuits from each "tile" of the mosaic are then arca-weighted and averaged

together to supply a single set of boundary flux values to the ammospheric model.

} :
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4, Summary and Conclusions

Soil moisture directly affects the partitioning of energy at the surface between latent and f
sensible heating. Where soil moisture is high, evaporation will predominate. adding to ?
atmospheric moisture content. Where it is low, the land surface will warm under the influence ; 5
of radiational heating, Thus, it is not soil moisture which directly affects the atmosphere, but E
latent and sensible heating which is modulated by soil moisture. ?

Soil moisture is difficnit to quantify in terms of its affect on the atmosphere. Many other
factors, such as vegetation, soil characteristics and ambient conditions alter the transfer of
moisture from soil to the air. Also, soil moisture is very difficuit to measure directly due to
its heterogeneity at small scales. There is observational evidence that soil moisture correlates
to future rainfall and temperature in certain instances. These correlations seem to be valid

only out to three months, and arc highly dependent on season and location.

Modeling studies show that strong perturbations in seil moisture on global or regional scales
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can affect atmospheric circulation, and persist for several months. However, the role of .soil
moisture in generating long term climate variability is not well understood. There has been
o abservational evidence that soil moisture anomaiies in an otherwise unaltered surface can
persist for time scales beyond a year, nor can they affect interannual climate. Yet changes -
in surface vegetation such as deforestation (Dickinson and Henderson-Sellers, 1988; Lean and
Warrilow, 1989; Nobre et al,, 1991) and desentification (Xue and Shukla, 1992) can change
the climatological values of soil moisture, as well as surface roughness and albedo, These
changes may then aiter climate in significant ways. This may be the most important and

ominous manifestation of soil moisture repercussions on climate.
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