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Abstract
Error gr(;»\rth rates in a dynamical coupled ocean-atmosphere prediction system are calculated by
examining forecasts made from a large number of initial conditions based on consecutive months.
The error is defined as the difference between consecutive forecasts valid at the same time. The
error growth calcﬁlations have been made using the forecasts from the original Zebiak-Cane model
in which initial conditions for coupled predictions were obtained by forcing the ocean model with
observed wind stress. The error growth calculations are repeated for revised forecasts using the same
model, but with initial conditions obtained by combining the wind stress from observations and the
coupled model simulation. The revised initialization scheme gives greater hindcast skill. It is found
that the growth rate of the initial errors for forecasts from the revised initialization procedure is
higher than that for the original procedure. The greater hindcast skill of the revised initialization
scheme is entirely due to reduction of the initial error. These results are encouraging for more
complex prediction systems, where it is anticipated that reductions in initial errors via data

assimilation techniques will lead to improvements in forecast skill.



1. Introduction

In a recent paper, Chen et al., (1995; hereafter referred to as CZBC) introduced an
initialization procedure into the Zebiak and Cane (1987; hereafter refetred to as ZC) coupled ocean-
atmosphere prediction system that dramatically improved the hindcast skill of eastern tropical Pacific
sea surface temperature anomalies (SSTA). In the original ZC prediction system, the ocean initial
conditions for the coupled model prediction were obtained by forcing the ocean model with Florida
State University (FSU; Goldenberg and O’Brien, 1981) observed wind stress. In the CZBC model,
the initial conditions for the coupled predition system are obtained by integrating the coupled model;
however, the wind stress felt by the ocean model is nudged towards the FSU observations. The best
hindcast skill was obtained with relatively weak nudging in the deep tropics and strong nudging in
the subtropics.

In the ZC model, there is substantial dependence of hindcast skill on the initial time of the
hindcast. Hindcasts initialized in January have smaller skill compared to those initialized in April
especially at longer lead times. It has been suggested that this seasonal dependence of hindcast skill
is the result of relatively large error growth during the boreal spring season. In the results of CZBC,
much of the seasonal dependence of the hindcast skill appears to be eliminated. By enhancing the
lead time for skillful hindcasts, CZBC suggested that the initialization procedure improved the
predictability of the model and eliminated the so-called spring prediction barrier. In this paper we
examine the error growth characteristics for both the ZC and the CZBC model, and investigate the
reasons for improved predictions in the CZBC model.

In the framework of a dynamical model with a given initial condition, the lead time of useful

forecasts depends on:



a) The accuracy and internal consistency of the initial conditions
'b) The accuracy of the model formulation

c) The rate of growth of errors in the initial conditions and errors in the model formulation.

Since the ZC and the CZBC prediction systems have identical models, the differences in the
hindcast skill must be either due to differences in the accuracy and internal consistency of the initial
conditions or differences in the growth rate of initial errors. For a dynamical prediction system, error
growth rate is a useful and convenient measure of predictability. If the error growth rate is reduced
either by the initialization procedure or by improving the model, then it can be said that the
predictability of the prediction system has improved. Of course, even if improved hindcast skill is
due solely to a reduction of the initial errors, the lead time of useful forecasts will increase. In order
to address the question of whether the improved hindcast skill of the CZBC model was due to
reduction in the error growth rate or due to reduction in the initial error, we have calculated the error
growth in a large sample of hindcasts from both the ZC and CZBC forecast systems. The
methodology for calculating the error growth rates and the resuits of these calculations are described
in Sections 2 and 3.

The procedure we have followed to investigate the predictability of the coupled system was
pioneered by Lorenz (1982} to study the growth rate of one day forecast errors in a weather
prediction model. Lorenz (1982), and more recently Simmons et al. (1995), calculated the error
growth in a large sample of forecasts from consecutive atmospheric initial conditions from the
European Centre for Medium-Range Weather Forecasts (ECMWF). By calculating the rate of
growth of an initial error (where error is defined as the difference between consecutive forecasts

valid at the same time), they estimated the potential improvements in future predictions by reducing



the one day forecast error. They also showed that even if no model improvements were possible,
forecasts beyond one day could be improved simply by reducing the one day forecast error. Here
we show that CZBC have indeed improved long range forecasts of tropical Pacific SSTA by

reducing the one month forecast error.



2. Error Growth Calculations

Following Goswami and Shukla (1991), we have calculated the growth rate of errors in
predicting SSTA over the NINO3 regioﬁ (150°W-90°W, 5°S-5°N). The initial error is defined to
be equal to the one month prediction error for all hindcasts during the 25 year period (1970-1994).
Suppose ¥y; is the predicted NINO3 SSTA corresponding to ;the ™ month of the i‘i‘ prediction. The
mean error as a function of lead time (k=1,..,18 months) where the initial error is equal to the one

month prediction error is

= (l['ri,k"lpi+1,k-l)2 ] 1/2 )

E(b) = 1
(k) 2;[ = (1)

In the calculations presented here N=288 for both the ZC and CZBC hindcasts and i=0 corresponds

to the forecasts initialized in January 1970.

To get a quantitative estimate of the growth rate of initial errors and the saturation value we

have assumed that the error growth is governed by

% _wrQ - EE) 2)

dt

where « is the error growth rate and E,, is the error saturation value (Lorenz, 1982; Dalcher and
Kalnay, 1987). In estimating o and E,, we have used centered time differencing and applied a least

squares fit,



3. Resulis

Figure 1 has two panels. The top panel is for the original ZC model, and the bottom panel
is for the CZBC model. The dotted curves show the forecast root mean square (rms) error with
respect to actual observations of NINO3 SSTA. The dash-dot curves show the forecast rms error
with respect to NINO3 SSTA produced by forcing the ocean model with observed FSU wind stress
in the case of the ZC model and the coupled initialization in the case of the CZBC model. The solid
lines show the rms error calculated from equation (1) which is a measure of the differences between
consecutive forecasts valid at the same time. The dashed lines are obtained by fitting equation (2)
to the solid line. The most dramatic difference between the ZC and the CZBC prediction systems
is the reduction of one month forecast error with respect to the model SST obtained by forcing the
ocean model with observed wind stress. The forecast rms error with respect to observations even
at the zero lead time is higher for the ZC model (0.83°C) compared to the CZBC model (0.67°C).
These curves clearly suggest that the initial conditions in the CZBC model are in greater dynamical
equilibrium with the coupled model than in the ZC model.

The growth rates, saturation values and doubling times for both the ZC and the CZBC
hindcasts are shown in Table 1. For the results shown in Fig. 1 and Table 1, the same number of
hindcasts (N=288) and initial dates are used. In calculating the constants in the error equation (2)
lead times of 2 to 18 months are used. In both cases the curve for the error equation follows the
model error quite well and it is clear that the rms error for the ZC prediction system is considerably
larger than the rms error for the CZBC system. In contrast to the rms error however, Table 1 shows

that the error growth rate is smaller for the ZC system. The error doubling time in the ZC system is



7.2 months, whereas the errors double in 5.1 months in the CZBC system. It should also be noted
that the saturation value for the CZBC system is considerably smaller than that for the ZC system.

Given that the initialization procedure gives a more balanced initial condition, one would
have hoped that the error growth rate would be reduced, however, as Table 1 shows this is not the
case. The initialization procedure reduces the initial error so much, that even though the error growth
rate is somewhat larger the hindcast skill is signifigantly better. This indicates.that the entire
enhancement of the hindcast skill is due to the reduction of the initial error.

In order to address the seasonality of the hindcast skill we have also calculated the error
growth rate for the CZBC system as a function of season. In this case we have used lead times of 2
to 10 months in fitting the error equation. Beyond 10 months the seasonally sampled errors do not
fit the error growth equation (2). The error doubling times are smallest for hindcasts initialized in
March-May and December-February (1.7 months) and largest for hindcasts initialized in June-
August (3.7 months). We were unable to obtain meaningful solution to equation (2) for predictions
initialized in September-November. While this result indicates that some kind of spring prediction
barrier remains in the model, the sample size needs to be significantly increased before the
seasonality in the error growth statistics can Be adequately diagnosed.

We have also made some preliminary calculations of the error growth for the Center for
Ocean-Land-Atmosphere Studies (COLA) prediction system described in Kirtman et al., (1996).
Both the atmospheric and the oceanic components of the COLA prediction system are state-of-the-art
general circulation models and the procedure for initializing the predictions is described in Kirtman
and Schneider (1996). Based on a relatively small sample of 60 cases, we have estimated the error

growth rates using the first 10 months of the hindcasts. The initial errors and the growth rates for the



COLA prediction system are comparable to those of the ZC system. Given the impréssive
improvements in hindcast skill obtained by CZBC, we are encouraged that by reducing the initial
error in the more complex prediction system, the forecast skill could also be improved.

It is of some interest to note that, from error growth considerations, the manner in which the
CZBC model has improved the skill of forecasts is quite similar to the improvement of short range
forecast skill of the ECMWF model: by reducing the initial error while increasing the error growth
rate. What is most interesting and encouraginé about the CZBC model is that there is still a large
difference between the growth rate of forecast errors and growth rate of error between consecutive

forecasts, and therefore, there is considerable scope to improve the forecasts by improving the model.
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Captions

Figure 1: Forecast rms error as a function of lead time for NINO3 SSTA with respect to observations
(dotted line); with respect to model SSTA forced by observed wind stress (dash-dot line); as
calculated from equation (1) (solid line) and equation (2) (dashed line) see text.

Table 1: Growth rate, doubling time and saturation of errors calculated using the fitted model (2) for
both the ZC and CZBC prediction systems.
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Table 1 - Error Growth Statistics

Prediction System ZC CZBC
Growth Rate 0.096 months™ 0.14 months™
Doubling Time 7.2 months 5.1 months
Saturation Value 3.15°C 0.67 °C




