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ABSTRACT

This paper proposes a strategy for selecting the best linear prediction model for Indian monsoon rainfall. In
this strategy, a cross-validation procedure first screens out all models that perform poorly on independent data,
then the error variance of every remaining model is compared to that of every other model to test whether the
difference in error variances is statistically significant. This strategy is shown to produce better forecasts on
average than selecting either the model that utilizes all predictors, the model that explains the most variance in
the independent data, or the model with the most favorable statistic suggested by Mallow. All of the model
selection criteria suggest that regression models based on two to three predictors produce better forecasts on
average than regression models using a larger number of predictors. For the period up to 1967, the forecast
strategy selected the prior climatology as the best predictor. For the period 1967 to the present, the strategy
performed better than forecasts based on the prior climatology and all other methodologies investigated. Indexes
of Pacific Ocean temperature in the Tropics (called Nifio-3) and indexes of pressure fluctuations in the Northern
Atlantic (called NAO), at 1-6 lead months, failed to provide prediction models that performed better on average
than a prediction based on the antecedent climatology. Forecasts based on the prior 25-yr climatology had
especially high skill during the recent period 1989-2000, a fact that appears to be a mere coincidence, but which
may be relevant to interpreting the skill of the power regression model currently used by the India Meteorological
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Department.

1. Introduction

The rainfall over India displays a spectacular annual
cycle in which more than 80% of the precipitation oc-
curs in the months June—September (JJAS). This cycle,
called the Indian summer monsoon, is attributed to the
land—sea temperature contrasts that grow as a result of
summer heating and represents the most dramatic re-
gional manifestation of the large-scale Asian monsoon
system. Although regional rainfall can have large year-
to-year fluctuations, the interannual variability of total
India rainfall is about 10% of the mean rainfall. These
fluctuations can have devastating impacts on the pop-
ulations of Asia and India by altering the agricultural
production and availability of drinking water. Conse-
quently, the problem of predicting the onset, withdrawal,
and total amount of monsoon rain is a high priority in
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many Asian countries. Despite substantial efforts
throughout the world, current atmospheric general cir-
culation models cannot realistically simulate, much less
predict, the structure and magnitude of the intraseasonal
and interannual variability of summer precipitation over
the Asian—Australian monsoon region, even with ob-
served sea surface temperatures (Sperber and Palmer
1996). Coupled ocean—atmosphere models show even
more deficiencies (Delecluse et al. 1998).

The fact that dynamical models give unsatisfactory
monsoon predictions does not preclude the possibility
that a statistical model could give useful forecasts. To
construct a statistical model, one first postulates an equa-
tion relating the forecast variables, then one estimates
the parameters in the model in such as way as to min-
imize the error of the predictions. This assumes that past
statistical relations will be maintained in the future.

The statistical prediction of Indian monsoon rainfall
has a long and venerable history. Shukla et al. (1986)
review much of this history, beginning with the pio-
neering work of Blanford in the late 1800s and Walker
in the early 1900s. Hastenrath (1995) provides a review
of recent investigations. Approximately a dozen pre-
dictors have emerged from these studies as being im-
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portant for predicting India monsoon rainfall. These pre-
dictors include 1) location of the 500-hPa subtropical
ridge over India, 2) Himalayan snow cover, 3) sea sur-
face temperature, 4) the Southern Oscillation, 5) surface
temperature over India, and 6) the surface pressure over
the Northern Hemisphere. A very basic question, which
does not seem to have been addressed systematically,
is which of these predictors should be utilized at a given
time?

To address the above question, two problems of sta-
tistical prediction need to be recognized. First, even if
an equation fits an historical record very well, it may
predict new, independent data very poorly. Second, no
unique regression equation exists for a fixed set of pre-
dictors. Indeed, 27 distinct regression equations can be
derived from a pool of p predictors. Thus, the key prob-
lem in statistical prediction is not in constructing re-
gression models, but in choosing a good model, out of
a vast pool of models, that will give good predictions
in the future. This is called the problem of model se-
lection. These problems and methods for addressing
them are reviewed in section 2.

The primary purpose of this paper is to suggest a
solution to the problem of model selection, and to draw
conclusions regarding Indian monsoon rainfall predic-
tion based on this solution. We will consider only linear
regression models —that is, forecast models that are lin-
early related to a finite set of predictors, with coefficients
obtained by the method of least squares. A strategy for
selecting the best model for prediction is proposed in
section 3. In this procedure, a cross-validation procedure
first screens out all models that are likely to perform
poorly on independent datasets, then the prediction error
of each model is compared with those of all other models
to determine whether the difference in error variance
exceeds some threshold of significance. Other strategies,
such as choosing the model that explains the most var-
iance in independent datasets, and choosing the model
with the most favorable statistic suggested by Mallow,
are also considered. The skill of these strategies on mon-
soon-type datasets are discussed in sections 4 and 5.
Implications of these results for forecasts by the power
regression model used by the India Meteorological De-
partment are discussed in section 6. The main results
of this paper are summarized in the concluding section.

2. Review of linear prediction

In this section we review basic concepts and defini-
tions of linear regression prediction. The first task is to
determine a least squares estimate of the JJAS Indian
monsoon rainfall, R(¢), based on observations of P var-
iables x,, x,, . .., x,. The variable we want to predict,
R(1), is called the predictand, and the antecedent vari-
ables on which the prediction is based, x,, x,, . .., Xp,
are called the predictors. The prediction equation is as-
sumed to be of the linear form
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R, = ay + ax,(t — 7)) + ax,(t — 7,) + -

+ apxp(t — 7,) + L), ey

where R, represents the least squares estimate of R, the
parameters a,, a,, ..., a, are to be determined from
data, the 7 values are lead times, and { represents the
prediction error. Here ¢ is discrete with N distinct values.
The random prediction errors {(#) are assumed to be
independent, normally distributed with zero mean and
constant variance.

The parameters a,, a,, ..., a, that minimize the
mean-squared errors (R — R,)* can be determined by
the method of least squares. A useful introduction to
this topic can be found in von Storch and Zwiers (1999).
The solution is as follows. Suppose (1) is written in the
equivalent vector form R, = x"a, where superscript T
denotes a transpose, x = (1, x;, x,, ..., Xp), and a =
(ay, a,, ..., ap). The constant term has been included
in concise form by introducing an additional ““predic-
tor”” whose value is always unity. In this notation, the
least squares solution is given by

a = (xx7) KxR), (2)

where brackets denote an average over the whole record
of N data points. The quality of the fit can be measured
by the mean-squared prediction error, e,, and by the
anomaly correlation coefficient, p,:

e, = (R, = R)?) = (R*) — a"(xR)

_ (RR,)  [a"(xR) 3)
TR R
An additional metric that will prove convenient is
_ €y _ 2
sd - 1 - <R2> - pd' (4)

This metric indicates the fraction of variance explained
by the forecasts. It is bounded above by unity and van-
ishes when a = 0.

A large value of s, merely indicates that the equation
fits the data well, it does not necessarily imply that it
predicts the future well. To test the predictive perfor-
mance of the model, we apply a cross-validation pro-
cedure, assuming that monsoon rainfall in any given
year is statistically independent of the rainfall in other
years. To apply this procedure, the data are divided into
two disjoint sets: one for estimating (or ““‘training”’) the
model, called the dependent sample, and the other for
verifying (or “‘testing’’) the forecasts, called the inde-
pendent sample. Suppose the total record can be par-
titioned into K mutually exclusive sets of equal size;
denote the kth partition by /,. Any one of these partitions
can be considered the independent set, while the com-
plement of this set, D,, can be considered the dependent
set. The a linear prediction model determined strictly
from the kth dependent set is R, = x"b,, where
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b, = (Z XXT>I(2 XR). 5)

The crux of cross validation is to verify this model
strictly against the independent set. The quality of the
resulting forecasts can be measured by the mean-square
(MS) forecast errors and anomaly correlation coefficient
(ACQ) in the independent set:

6,=®,~ B =R+ blxx b, ~2b](xK")
J— —k
RR, bI(xR )
rk = — = — — ) (6)
V'R, VR IBLGXT by ]

where overbar (-)* denotes an average over the kth in-
dependent dataset. This procedure can be repeated for
each independent dataset. Averaging over all indepen-
dent sets gives

K
E €p S =
=1

] ——, and

i

k=

e, =

=~

(N

where e, is the independent error variance, s, is the var-
iance explained in the independent set, and p, is the
overall anomaly correlation of the predictions in the
independent set.

The distinction between dependent and independent
error variances, e, and e;, becomes clear for small sam-
ple sizes N. Lorenz (1977) showed that, if the predictors
and predictand are chosen randomly and independently
from a normal distribution, in which case the variables
have no correlation in the population but could have a
large correlation in a small sample, then the expected
values of the independent and dependent error variances
e; and e, are

_7>E[R2], 8)

where E[ ] denotes an ensemble average (Lorenz’s no-
tation has been adjusted to conform to ours). For large
N, the two error estimates approach the correct value
of E[R?]. But as P/N increases, the expected error in
the dependent data tends to vanish while the expected
error in the independent set approaches infinity. Davis
(1976) derived similar results in the context of auto-
regressive models for moderately large N. In essence,
if the sample size is small compared to the number of
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parameters, the parameter values adapt to the peculiar-
ities of the sample. As a result, such models perform
very well on the dataset from which they were derived,
but perform poorly on a new, independent dataset. This
problem is called artificial skill. Since sample size is
always limited in practice, the existence of artificial skill
implies that empirical models should employ the small-
est number of predictors for adequate representation.
This principle, known as the principle of parsimony,
can be justified in other rigorous ways (Box et al. 1994).

The problem with statistical prediction can now be
seen clearly: the problem is not in constructing a forecast
model, but in choosing a single model that will produce
good forecasts on an independent dataset. One cannot
simply choose the model that fits the most variance in
the available record, because this model would always
be the one that includes all possible predictors, even if
the predictors have no physical relation with the pre-
dictand. Moreover, owing to artificial skill, the number
of predictors should be as small as possible. Thus, to
decide whether a set of predictors should be used in a
regression model, a systematic methodology is needed
to balance the negative impact of artificial skill against
the positive impact of capturing useful predictive in-
formation.

3. Criteria for selecting a regression model

In this section we suggest a method for selecting a
prediction model. Consider first the problem of selecting
the ““best model”” out of all models with only P pre-
dictors. An obvious choice is the model with the least
mean-square cross-validated error, ¢;, since this model
is most likely to perform well on independent datasets
drawn from the same probability distribution. To find
this model, we first fix the number of predictors P, and
then search all possible combination of predictors to
find the regression model that maximizes s;. That is, we
construct a least squares model for every possible com-
bination of the physical parameters: if P = 1, then we
consider x, alone, x, alone, ...; if P = 2, then we
consider x, and x,, x, and x5, ...; and so on. This is
called the ‘‘all possible regressions procedure.” Then,
the combination of variables yielding the maximum ex-
plained variance in the independent sample, s;, is se-
lected. We call this the screening procedure. Note that
-for a pool of P predictors there are 27 regression mod-
els—the number of models increases exponentially with
P. Thus, screening is not practical if the pool of pre-
dictors is large.

The above screening procedure leads to a specific set
of predictors for each P. We propose the following strat-
egy for selecting the best value of P. First, we test
whether an observed increase in s,, in going from a P
to a P + M parameter model, is larger than would be
expected by random chance. If not, then the principle
of parsimony calls for rejecting the P + M model in
favor of the model with fewer parameters. This test,
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which we call the F test, is a standard procedure in
linear regression (see von Storch and Zwiers 1999 for
an introduction). To understand this test, consider two
models of the predictand R:

Model A: R=a, + ax, + -+ apx, + {

Model B: R =b, + byx;, + -+ + bpxp + bp, 1 Xp,,

+o t bpyXpn T L )

Model B contains all of the predictors of model A, plus
the additional predictors X, , Xp,s, - - . s Xp,y. We want
to know whether the additional predictors in model B
contribute substantial predictive information not con-
tained in the variables x,, x,, . . ., x,. Intuitively, if the
additional variables do not contribute much predictive
information, then the prediction errors of model B
should differ little from those of model A. In essence,
we want to test the null hypothesis that there is no real
difference between models A and B; that is, our null
hypothesis is that b,,, = bp., = - = bp,,, = 0. If
the null hypothesis is true and the errors are normally
distributed, then it can be shown that

(e3) — (e
M

(e3)
N-M-P—1

follows an F distribution with (M, N — M — P — 1)
degrees of freedom. The quantities (e2) and (e3) rep-
resent the squared error of models A and B averaged
over the dependent sample. Large values of F favor
rejection of the null hypothesis, indicating that the M
additional parameters lead to a significant reduction in
the prediction errors, and therefore that model A should
be rejected and model B should be adopted.

Note that the above procedure assumes that the P-
parameter model is a subset of the P + M parameter
model. Conceivably, after the screening procedure, the
two models could contain completely different predic-
tors. In practice, however, this discrepancy occurs rare-
ly—the P-predictor model usually is a subset of the P
+ M predictor model. Moreover, results presented in
the next two sections suggest that the procedure still
gives sensible results even when one model is not a
proper subset of the other. Thus, in this paper, we apply
the F test to the screened regression models even when
the lower-order model is not a proper subset of the full
model.

In order to compare F values with different degrees
of freedom, it will prove convenient to convert the F
values into a significance level « such that

f= (10)

.
a=1- f Fyn-n—p—1(x) dx, (11)
0

where the integrand is the F distribution function with
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(M, N— M — P — 1) degrees of freedom. Small « calls
for rejecting the null hypothesis that the error variances
are identical and for accepting the alternative hypothesis
that the full model is better than the reduced model.
The value of a below which we reject the null hypoth-
esis is called the significance level «,.

The most appropriate value for the significance level
«, is not obvious. It should be recognized that the all
possible regressions procedure leads to a bias toward
identifying a poor prediction model. To see this, note
that if the probability of a type-I error in a single hy-
pothesis test is p, then the probability of an error at least
once in m tests is 1 — (1 — p)™, which approaches unity
in the limit of large m. Thus, a fairly stringent signifi-
cance level should be chosen, with the level becoming
more stringent as the pool of predictors grows. In this
paper, we will explore different critical significance lev-
els.

Since more than two models usually will be com-
pared, a well-posed strategy requires specifying both a
critical significance level and a contingency table for
every possible result. In this paper, we circumvent the
need to specify contingency tables by adopting the most
conservative rule, namely, by adopting a model with P
predictors only if it is significantly better by the F test
than all other models with fewer predictors.

The above screening procedure and F test criteria are
used only for selecting the predictors. After the pre-
dictors have been selected, the method of least squares
is applied to the full dataset to obtain the regression
coefficients.

It will prove useful to compare the F-test selection
criterion to other criteria. A natural idea is to choose
the model that explains the most variance in the inde-
pendent data; that is, the model that maximizes s,. This
criterion, which we call the ‘““maximum s, criteria,” is
intuitively appealing because it gives the model that
makes the best predictions of independent data. Nev-
ertheless, it is not ideal for two reasons. First, it makes
no reference to the actual value of s,. For example, if
the maximum value were negative, indicating that the
predictions are systematically worse than forecasts
based on climatology, then we probably would conclude
that no prediction should be attempted. Second, the
maximum s, may not differ in a statistical sense from
other observed values of s,. Unfortunately, the signifi-
cance test for s, is not straightforward to calculate from
first principles, since this calculation must account for
the cross-validation procedure.

Johnson and Wichern (1998) discuss another criterion
based on Mallow’s C,:

c - (e3) o
= [N — 2P + D)].

! (€3)
N—M—-—P—1

To understand this statistic, note that if the reduced mod-
el is adequate, that is, does not suffer from lack of fit,

(12)
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then E[{e2)] = (N — P — 1)0?2, where o is the standard
deviation of { in (9). If, in addition, the error variance
of the full model is unbiased, then E[{e2)] = (N — P
— M — 1)0?2. Thus, if the correct model size is near P
+ 1, then C, will roughly equal P + 1, provided the
full model is unbiased. Thus, if we plot (P + 1, C,) for
each subset of predictors, then we can identify good
models as those with (P + 1, C,) coordinates near the
45° line. Near the completion of this work, we discov-
ered other criteria, such as Akaike’s information crite-
rion, which some authors advocate strongly (Burnham
and Anderson 1998). These other criteria will be con-
sidered in future work.

4. Forecast models based on Nino-3 and NAO

In this section we apply the procedures outlined in
the previous section to construct prediction equations
for monsoon rainfall based only on two indexes, Nifio-3
and North Atlantic Oscillation (NAO) defined in section
4a. Section 4b demonstrates the problem with selecting
the model that maximizes the dependent variance. The
results of the screening procedure are discussed in sec-
tion 4c, and the results of applying the selection criteria
are discussed in sections 4d—4e. It is found that the
different strategies do not always select the same model.
To determine which strategy selects the best forecast
model, the strategies are applied to every continuous
25-yr segment of the record, then the selected model is
used to predict the immediately following (independent)
26th year. The performance of these models is evaluated
in section 4f. The results of using only Nifio-3 or NAO
as predictors are discussed in section 4g.

a. The data

The predictors used in this section are the monthly
mean Nifio-3 and NAO indices, for the months Decem-
ber—May prior to the JJAS Indian monsoon. This gives
a total of 12 candidate predictors: 2 indexes for each of
the 6 lags. By convention, January is said to be at lag
—5, February is at lag —4, and so on until May at lag
—1. The datasets from which these indices are derived
are the following:

1) Total Indian monsoon rainfall during JJAS, estimated
from area-weighted observations at 306 land stations
uniformly distributed over India, 1871-2000 (Par-
thasarathy et al. 1995).

2) Monthly mean Nifio-3 (Pacific sea surface temper-
ature over 5°S—5°N, 90°~150°W): 1870-1998 (Had-
ley Centre, United Kingdom); 1950-2000 [the Na-
tional Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center, available online
at ftp.ncep.noaa.gov].

3) Monthly mean NAO index (sea level pressure dif-
ference between Gibraltar and Stykkisholmur, Ice-
land), 1870-2000 (University of East Anglia, avail-
able online at www.cru.uea.ac.uk).
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FiG. 1. Total JJAS Indian monsoon rainfall vs yr.

We refer to these data as set I. Results for other pre-
dictors are discussed in section 5. For reference pur-
poses, the total Indian monsoon rainfall, minus the grand
mean of 85 cm, is shown in Fig. 1. In light of the
suggestion by Trenberth (1990) that the climate ‘““shift-
ed” around 1976, the periods 1871-1976 and 1977-
2000 will be analyzed separately.

b. Criteria based on maximizing dependent variance

We first show that the model that best fits the de-
pendent data is not necessarily the best model for pre-
diction. To do this, we fix the number of predictors P,
and then search to find the model that best fits the data
(i.e., maximizes s,). Figure 2 shows the variance ex-
plained in the dependent sample, s,, obtained from this
search for the period 1977-2000. Note that the variance
explained in the dependent sample increases with the
number of predictors. On the basis of the solid curve
in Fig. 2, one might mistakenly conclude that the “‘best”
prediction model is that which contains all predictors.
However, the increase in s, with the number of predic-
tors is a mathematical certainty, even if the variables
are uncorrelated in the infinite ensemble. In contrast,
the variance s, that each model explains in the inde-
pendent data, as determined by cross validation using
continuous 5-yr samples for the independent data, is
given by the dashed line in Fig. 2. The figure clearly
shows that the variance explained in the independent
sample decreases as more predictors are added beyond
a certain critical value. This result is consistent with the
theoretical arguments of Davis (1976) and Lorenz
1977).

c. The screening procedure

Now we apply the screening procedure to find the
model that explains the most variance in the independent
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FIG. 2. Variance explained in the dependent (s,) and independent
(s;) data by the regression model that maximizes s,. The pool of
predictors are the monthly mean Nifio-3 and NAO indices at lead
months 1, 2, ..., 6. The regression model is constructed from data
in the period 1977-2000.

dataset. To do this, we fix the number of predictors P,
then apply the cross-validation method to every com-
bination of predictors to find the model that maximizes
s; at that P. The results for P = 0 through 10 for the
period 1871-1976 are shown in Fig. 3. The two curves
show the results of the cross validation in which the
independent datasets consist of 1- and 5-yr periods. The
fact that the two curves nearly coincide indicates that

Prediction of Indian Monsoon Rainfall
(1871-1976; NINO3 and NAO)
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FIG. 3. Variance explained in the independent data by the regression
model that maximizes s; for fixed number of predictors. The pool of
predictors are the monthly mean Nifio-3 and NAO indexes at lead
months 1, 2, ..., 6. The regression model is constructed from data
in the period 1871-1976. The two curves give the results using 1-
(solid) and 5-yr (dash) ““chunks’ for the size of the independent
dataset.
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TABLE 1. Regression models that maximize the variance explained
in the independent data in the period 1871-1976, for one, two, and
three predictors. Also tabulated are the ““goodness of fit” statistics
s, and s;, which measure the variance explained in the dependent and
independent datasets, respectively. The regression coefficients appear
to the left of the predictor, and the time lag (in months) appears to
the right in parentheses.

Forecast model for JJAS

Indian monsoon rainfall (cm) Sy S;
—4.5Nifio-3(—1) 10% 7%
+7.3Nifio-3(—2) —10.3Nifo-3(—1) 17% 12%
—0.3NAO(—5) +7.2Nifio-3(—2) —10.3Nifio-3(—=1) 17% 12%

the results are not sensitive to the size of the independent
dataset. The figure shows a clear peak at two predictors,
suggesting that the two-predictor model will produce
the best forecasts in independent data. The forecast mod-
els are tabulated in Table 1. The table shows that the
best two-predictor model consists of Nifio-3 at leads —1
and —2, with coefficients of similar magnitude but op-
posite sign. This result suggests that the best predictor
of Indian monsoon rainfall (IMR) during this period is
essentially the fendency of Nifio-3 prior to the monsoon
season, plus some additional weighting on the Nifio-3
value at lead —1. A similar conclusion was reached by
Shukla and Paolino (1983) and Shukla and Mooley
(1987) on the basis of a compositing technique. The
present result not only confirms this earlier result, but
adds to it by demonstrating that there is no better pre-
dictor within this dataset.

The same analysis was repeated for the much shorter
period 1977-2000. The results are shown in Fig. 4. The
similarity of the two curves for the 1- and 5-yr inde-
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FI1G. 4. Variance explained in the independent data by the regression
model that maximizes s,. The pool of predictors are the monthly mean
Nifio-3 and NAO indices at lead months 1, 2, ..., 6. The regression
model is constructed from data in the period 1977-2000. The two
curves give the results using 1- (solid) and 5-yr (dash) chunks for
the size of the independent dataset.
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TABLE 2. Regression models that maximize the variance explained
in the independent data in the period 1977-2000, for one, two, three,
four, and five predictors. The format of the table is the same as in
Table 1.

Forecast model for JJAS
Indian monsoon rainfall (cm) S, S;

—2.7 —2.7NAO(-1) 21% 17%
—4.8 +1.9NAO(—3) —3.3NAO(—1) 37% 30%
—3.5 —0.9NAO(—6) +1.9NAO(—5) —2.9NAO(—1) 49% 36%
4.2 —0.9NAO(—6) +1.8NAO(—5) —1.ANAO(—2)
—3.4NAO(-1) 57% 36%
—2.9 —1.0NAO(—6) +2.INAO(—5) —2.9NAO(—1)
+3.0Nifio-3(—6) —5.3Nifio-3(—2) 69% 46%

pendent sets again confirms that the results are insen-
sitive to the size of the independent data. We see, how-
ever, two major differences from Fig. 3: the explained
variances are much higher, and the maximum explained
variance occurs at P = 7. While the enhanced fractional
variance is a plausible consequence of analyzing a short-
er absolute period, its magnitude appears too large to
be dismissed as sampling errors. For instance, analysis
of other 25-yr subsets, such as 1901-25, 1926-50,
1951-75, give variances well below the variances shown
in Fig. 4. The corresponding regression models for the
period 1977-2000 are tabulated in Table 2 for one to
five predictors. A major difference with the analogous
result for the period 1871-1976 (Table 2) is that the
NAO index arises as a significant predictor. The sign
and magnitude of the coefficients do not suggest any
simple interpretation in terms of derivatives or running
averages of the NAO.

d. The F-test criteria

We now discuss results of the F-test criteria. In this
section, we fix the critical level «, at 1.5% and use only
continuous 5-yr samples for the independent data.

The results for the period 1871-1976 are given in
Table 3. This table gives the significance level « of the
difference in error variances between the screened re-
gression models. The table is structured so that the num-
ber of predictors in the reduced model increases to the
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right, and the number of predictors in the full model,
to which the reduced model is compared, increases
downward. First note that the first five rows in the zero-
predictor column of the reduced model are all less than
0.1%. These small values indicate that screened models
with one to five predictors have significantly less error
variance than a forecast based on climatology. Thus, we
accept the alternative hypothesis that one or more of
these predictors significantly reduces the forecast error
of the regression model and consider the one-predictor
model. The first three significance levels in the one-
predictor column of the reduced model are 0.4%, 1.3%,
2.1%, and increases rapidly after that as the number of
predictors in the full model increases. Since the sug-
gested critical level is 1.5% and the first two entries are
less than this, we conclude that the two- and three-
predictor models have significantly different error var-
iances from the one-predictor model. Thus, we continue
onward and consider a two-predictor model. The small-
est significance level in the two-predictor column is
44.9%, which is large compared to 1.5%. Furthermore,
all the significance levels below and to the right of the
two-predictor column are large compared to 1.5%. We
conclude that the three- or higher-predictor models do
not have significantly different error variances than the
two-predictor model. Therefore, according to the f-test
criterion with a, < 1.5%, we should select the two-
predictor model from this dataset, consistent with the
conclusion reached on the basis of Fig. 3.

We have performed a similar analysis for the period
1977-2000. We find that the F test selects the zero-
predictor model for a critical level of 1.5%, but selects
the five-predictor model for a critical level in the range
2%-3%. These conclusions will be examined more
closely in section 4f.

e. Other selection criteria

We now consider alternative selection criteria. If the
criteria is to select the model that maximizes the in-
dependent variance s;, Fig. 3 would imply that the two-
predictor model derived from the 1871-1976 record

TaBLE 3. Significance level of the difference in error variance between the reduced regression model and the full regression model for
the period 1871-1976. A small value (say less than 1.5%) calls for rejecting the reduced model in favor of the full model.

Predictors No. of predictors in the reduced model
in full
model 0 1 2 3 4 5 6
1 0.001 NA NA NA NA NA NA
2 0.000 0.004 NA NA NA NA NA
3 0.000 0.013 0.499 NA NA NA NA
4 0.000 0.021 0.459 0.295 NA NA NA
5 0.001 0.029 0.449 0.335 0.297 NA NA
6 0.002 0.056 0.621 0.537 0.582 1.000 NA
7 0.004 0.094 0.741 0.686 0.756 0.947 0.742
8 0.007 0.146 0.834 0.800 0.868 0.979 0.910
9 0.013 0.213 0.903 0.886 0.938 0.995 0.978
10 0.018 0.258 0.914 0.899 0.940 0.983 0.951
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TABLE 4. The rmse and ACC of regression models selected by
different criteria for dataset I and the period 1901-98. The forecast

20 T 0 I 0 | T I T in each year was produced by a regression model derived strictly
from the prior 25-yr data.
X
L ® 1871-1976 | | Selection rmse
X 1977-2000 criteria (cm) ACC
X
10 + < _ F test (a, = 1.5%) 8.8 —0.05
- Mallow’s C, 8.9 0.17
__—=""x x % Maxgy, 10.4 0.06
On- - _-mTX X o All predictors 12 0.15
- L4 Climatology 8.2 -0.02
- °
0r « ° -
°
L ® . culated, screened, and selected according to a specific
criterion. Then, based on the selected P predictors, a
~10 | | | ) A \ \ | regression model was derived from the 25-yr record and

1 2 3 4 5 6 7 8 9 10
Number of Predictors + 1

FIG. 5. Mallow’s C, statistic for the screened regression models of
Indian monsoon rainfall for the period 1871-1976 (dots) and 1977—
2000 (x), and the 45° line (dash).

should be selected, and Fig. 4 would imply that the
seven-predictor model derived from the 1977-2000 re-
cord should be selected.

The values of Mallow’s C, statistic for the screened
regression models are shown in Fig. 5. Recall that the
goal is to select the model that lies the farthest below
the 45° line, shown as the dashed line. For the 1871—
1976 data, the point that lies the farthest below the 45°
line is the one for which the number of predictors plus
one is three, and therefore the two-predictor model has
the most favorable C, statistic. This selection is con-
sistent with previous conclusions. (The abscissa shows
one plus the number of predictors, as is conventional
for this procedure.) For the 1977-2000 data, the con-
clusion is that the five- or six-predictor model has the
most favorable C, statistic. The principle of parsimony
implies that the model with fewer predictors, namely
five, should be selected.

f. Comparison of selection criteria

At this point we have examined several different se-
lection criteria and obtained the following results. For
the period 1871-1976, every criteria selected the two-
predictor model. For the period 1977-2000, the F-test
criteria selected the five-predictor model for o, = 3%,
but selected the zero-predictor model for o, = 1.5%.
On the other hand, Mallow’s C,, statistic selects the five-
predictor model, while the model that explains the most
variance in the independent data is the seven-predictor
model. Which of these models should be chosen?

To gain insight into this question, we conducted the
following experiment. For each 25-yr segment in the
130-yr record, all possible regression models were cal-

used to predict the immediately following (independent)
26th year. For example, a forecast for 1901 was gen-
erated by applying this procedure strictly to the 1876—
1900 record; and so on. Repeating this procedure for
all years 1901-98 gives a time series of independent
forecasts that can be used to assess the different selec-
tion criteria.

The root-mean-square error and anomaly correlation
of the forecasts for other selection criteria are given in
Table 4. The table shows that while the F-test criterion
yields the least mean-square error of all selection cri-
teria, its error variance is larger than that of a forecast
based on a 25-yr running climatology. Since the re-
gression model depends on the critical significance level
chosen for the F-test criterion, the possibility exists that
a more stringent significance level may lead to better
regression models. However, at the 1.5% level used
here, only 22 out of the 98 forecasts differ from cli-
matology. Choosing an even more stringent significance
level would result in even fewer forecasts differing from
climatology. Indeed, for this pool of predictors, it can
be verified that no critical significance level will produce
forecasts better than climatology. Other criteria such as
Mallow’s C,, statistic, or the maximum s,, produce fore-
casts with even larger error variances than the forecasts
based on the F-test criterion. The fact that none of the
selection criteria yield forecasts better than a running
climatology suggests that antecedent, monthly mean
NAO and Nifio-3 indices, by themselves, provide little
or no predictive information of IMR beyond the cli-
matological mean, in either a mean-square sense or an
anomaly correlation sense.

g. Forecasts based on a single physical predictor

The above conclusion seems to contradict the pre-
vailing opinion that Nifio-3 preceding the monsoon sea-
son is an important predictor of IMR. It is, therefore,
of interest to examine the above results more fully. Be-
fore doing this, it is worth noting that the prevailing
view is based partly on the existence of a significant,
simultaneous correlation between monsoon rainfall and
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F1G. 6. (top) The 25-yr running rmse and (bottom) 25-yr running
correlation between observation and forecast, for four different fore-
casts: forecast based on prior 25-yr mean (solid), regression forecast
based only on the ENSO tendency index (long dash), forecast selected
by the F test with . = 1.5% (dash—dot), and forecast by the two-
predictor model that maximizes the independent variance (dotted).
The forecasts are produced by regression models derived strictly from
the 25-yr record prior to the year of forecast. The 1% and 5% sig-
nificance level for a correlation based on 25 degrees of freedom are
shown as straight dash—dot lines in the bottom figure. The F test and
climatology curves coincide for the period 1936-92.

ENSO indices (Webster et al. 1998; Kirtman and Shukla
2000). Indeed, the simultaneous 25-yr correlation be-
tween JJAS IMR and JJAS Nifio-3 has been negative
and statistically significant at the 1% level throughout
the entire record, except during the 1920s and 1930s,
and except for the last 25-yr period ending in 1998.
However, the mere fact that a simultaneous correlation
is significant does not at all imply that the time-lagged
correlation is significant.

To clarify these issues, we ignore the NAO index for
the moment and construct regression models of mon-
soon rainfall based only on ENSO indices. Furthermore,
to connect more closely with previous studies, we con-
sider two new regression models: a regression model
derived from a single predictor called “ENSO tenden-
cy,” which is the March—-May (MAM) average minus
the December—February (DJF) average Nifio-3.4 index
(used in section 5 as dataset ¢), and the regression model
based on the two lags of the Nifio-3 index that maximize
s;. As before, we construct a regression model from
every continuous 25-yr segment in the record, and then
use the model to predict the immediately following 26th
year. Moreover, instead of presenting the mean-square
error and anomaly correlation for the full period 1901—
98, we calculate these quantities using a sliding 25-yr
window.

Figure 6 shows a 25-yr running rms error and anom-
aly correlation coefficient (ACC) of the four forecast
models. We see that all of the models have a running
rmse within 10% of each other. However, the rmse of
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the climatology forecast is consistently /ess than that of
the other forecasts in the period 1925-78, implying that
none of the forecasts can beat climatology during this
period. For the later period 1979-98, we see that two
of the models, namely, the screened two-predictor model
and the ENSO-tendency model, have rmse that are on
average less than those based on climatology. The cor-
responding anomaly correlation of the forecasts over a
sliding 25-yr period shows that the correlations are pos-
itive and significant at the 5% level only in last decades,
and that none of the anomaly coefficients are significant
at the 1% level. These results support the conclusion
that, except in the last two decades, Niflo-3 provides
little predictive information beyond the climatological
mean. The conclusion in the previous section that Nifio-
3 indices one to six months prior to the monsoon are
not useful predictors, based on the skill over the full
period 1901-98, still is valid for this period, since the
detectable skill in the last two decades is not sufficiently
strong and/or long to dominate the average.

As noted earlier, no single value of the critical level
produces forecasts better than climatology over the en-
tire period. We have verified, however, that a larger
value of the critical level (2%—4%) produces forecasts
better than climatology over the last two decades.

Now we consider the predictive value of the NAO
indices of the prior 6 months. For this purpose, two sets
of predictors are considered: the predictors selected by
the F test with a, = 3%, and the single predictor that
maximizes s; (the independent variance) in the prior 25-
yr period. The forecast skill of the respective models,
measured by the 25-yr running rms forecast error and
ACC, is shown in Fig. 7. The figure shows that none
of the forecasts perform consistently better than a fore-
cast based on the climatology. We have verified that no
value of «, in the F test changes this conclusion. These
results lead to the conclusion that, for JJAS monsoon
rainfall, the NAO indices of the prior 6 months have
little or no predictive value beyond the climatological
mean.

5. Forecast models based on upper-level data, land
surface data, and other predictors

As mentioned in the introduction, several climate var-
iables aside from the NAO and Nifio-3 indices have been
suggested as useful predictors of Indian monsoon rain-
fall. Therefore, it is of interest to repeat the analysis of
the preceding section using an expanded pool of pre-
dictors. This section presents the results of this analysis
using the following predictors, which we call predictor
set II, which are all prior to JJAS monsoon:

1) Darwin sea level pressure tendency (Dtend): MAM
average minus DJF average, 1883-2000.

2) Darwin sea level pressure tendency: April average
minus January average, 1883-2000.
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TABLE 5. The rmse and ACC of regression models selected by
different criteria for dataset II and the period 1901-98. The forecast
in each year was produced by a regression model derived strictly
from the prior 25-yr data.

Selection rmse

criteria (cm) ACC
F test (o, = 3%) 7.6 0.33
Mallow’s C, 8.3 0.22
Max s, 8.7 0.16
All predictors 8.6 0.21
Climatology 8.2 —0.02
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FIG. 7. (top) The 25-yr running rmse and (bottom) correlation be-
tween observation and forecast, for three different forecasts: forecast
based on prior 25-yr mean (solid), forecast by the one-predictor model
that maximizes the independent variance (dash), and forecast selected
by the f test with a. = 3% (dotted). The forecasts are produced by
regression models derived strictly from the 25-yr NAO record prior
to the year of forecast. The 1% significance level for a correlation
based on 25 degrees of freedom is also shown.

3) Nifio-3.4 (5°S-5°N, 170°-120°W) tendency: MAM
average minus DJF average, 1870-2000 (Ntend).

4) Nifo-3.4 tendency: April average minus January av-
erage, 1870-2000.

5) NAO (sea level pressure difference between Gi-
braltar and Stykkisholmur, Iceland): January—Feb-
ruary mean, 1870-2000 (NAO-JF).

6) NAO: April-May mean, 1870-2000 (NAO-AM).

7) Indian surface temperature (25°-35°N, 55°-75°E):
MAM average, 1950-95 (TI).

8) Eurasian surface temperature (60°~70°N, 30°-50°E):
DIJF average, 1950-95 (TE).

the zero-predictor model for each year in the period
1901-67, implying that no model in this period per-
formed significantly better than a forecast based on the
climatology of the prior 25 yr. This idea is supported
by the fact that the other selection criteria always se-
lected p = 1 in this period, but performed worse than
climatology. The rmse and ACC of the forecasts for the
1971-98 period, in which the F test always selected p
= 1, are shown in Table 6. The table reveals that all
selection criteria performed better than climatology, in
both an rmse sense and an ACC sense, but that the F
test still performed the best out of all selection criteria.
These results suggest that the F-test criteria provides a
promising basis for linear prediction.

The above results differ dramatically from those of
the previous section. The previous section showed that
for dataset I no selection criteria gave better forecasts
than a running climatology, whereas the present section
finds that for dataset II all selection criteria beat a run-
ning climatology for a limited period. To understand

Root Mean Square Forecast Error of Prior 25—years

9)

500-mb ridge position at 75°E: April average, 1950—
2000 (Ridge).

It should be noted that the first six predictors listed
above still represent ENSO and NAO indices, but the
last three predictors are somewhat independent. We
compare the model selection criteria as in section 4f,
using a, = 3% for set II.

Table 5 shows the rmse and anomaly correlation of
the forecasts for the period 1901-98 based on different
selection criteria. The table shows that the F-test criteria
produces the best forecast in both rmse sense and ACC
sense. It also reveals that other criteria produce forecasts
that are worse on average than a prediction based on
the prior 25-yr climatology. Since only the F-test criteria
performs better than climatology, this example clearly
demonstrates the need for a good selection criteria.

The 25-yr running rmse and ACC for the F-test mod-
els are shown in Fig. 8. Interestingly, the F test selected
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FiG. 8. (top) The 25-yr running rmse and (bottom) correlation be-
tween observation and forecast, for regression model selected by the
F test (o, < 3%) (solid) and for forecast based on the 25-yr prior
mean (dash). The regression model was constructed from the 25-yr
record prior to the year of forecast. The 1% and 5% significance level
for a correlation based on 25 degrees of freedom are shown as straight
dash—dot lines in the bottom figure. The F test and climatology curves
coincide for the period 1925-67.
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TABLE 6. The rmse and ACC of regression models selected by
different criteria for dataset II and the period 1971-98. The forecast
in each year was produced by a regression model derived strictly
from the prior 25-yr data.

Selection rmse

criteria (cm) ACC
F test (o, = 3%) 6.5 0.62
Mallow’s C, 8.4 0.42
Max s, 7.4 0.52
All predictors 7.9 0.48
Climatology 8.6 —0.17

this difference, consider the regression equations se-
lected by the F-test criteria for the period 1967-2000
shown in Table 7. The regression coefficients are tab-
ulated under the ‘‘Predictors’ column, with blank en-
tries indicating that the particular predictor was not se-
lected by the F test. The table shows that the preferred
predictors are not ENSO and NAO indices alone. Rath-
er, the F-test criteria favored three predictors during the
period 1967-92, namely, the ridge location, Darwin ten-
dency, and European surface temperature. The years
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1993-96 appear to be a transition period with relatively
low skill. After 1996 the F-test criteria favored the NAO
index as the sole predictor. That the shift occurs in the
mid-1990s and the regression model is based on the
prior 25 yr suggests that the statistical relations between
monsoon rainfall and climate indices shifted in the early
1970s.

Is the skill of the models given in Table 7 dominated
by one or two predictors? To answer this question, con-
sider the period 1975-92, in which the available pool
of predictors is steady and the models selected by the
F test are similar. Moreover, consider just the ridge lo-
cation, Darwin tendency, and European surface tem-
perature, which are the only indices selected by the F
test during this period. We found that, in the case of
one predictor, forecasts based on the ridge location per-
formed the worst out of the three, and those based on
European surface temperature performed the best. In
fact, forecasts based on European surface temperature,
alone, performed about as well as the best forecasts
based on the optimal combination of the ridge location
and Darwin tendency. This greater predictive usefulness

TABLE 7. The forecast model, the forecast, its error, and goodness of fit statistics for the regression model in each year. The predictors
were selected by the F test (o, < 3%) and the regression coefficients were derived from the 25-yr record prior to the year of forecast. The

error column was computed as prediction minus observation.

Predictors

Error Forecast
Year (cm) (cm) s; (%) s, (%)  Constant Ridge Dtend TE Ntend NAO-AM  NAO-JF
1967 —-2.5 83.6 2 20 98.0 —4.1
1968 11.9 87.4 —15 0 87.4
1969 -0.2 82.9 1 21 97.7 —4.1
1970 —4.0 90.0 0 22 97.4 —4.1
1971 —-3.5 85.2 15 24 97.9 —4.3
1972 10.9 76.2 17 28 99.0 —4.8
1973 6.4 97.8 30 41 100.8 =5.7
1974 6.4 81.2 34 40 99.3 -53
1975 —-3.5 92.8 55 62 55.9 2.4 —-32
1976 —-0.4 85.3 60 64 55.1 2.5 —-32
1977 —10.2 78.2 56 62 53.4 2.6 —-34
1978 —4.1 86.8 50 57 57.5 2.4 —-33
1979 7.8 78.6 51 56 61.4 22 -3.6
1980 —34 84.9 52 58 56.5 2.5 -3.5
1981 -0.3 84.9 55 59 56.3 2.5 -3.5
1982 1.1 74.7 52 57 58.7 2.3 -3.5
1983 —6.6 88.9 55 60 56.6 2.4 -33
1984 4.1 87.7 64 72 64.2 2.0 -3.0 1.3
1985 39 79.8 59 70 63.4 2.0 -3.0 1.2
1986 3.3 77.6 60 71 62.2 2.1 -3.0 1.3
1987 4.6 74.4 65 77 61.2 2.1 -3.0 1.0
1988 —10.4 85.7 67 79 61.7 2.1 -3.0 1.1
1989 5.4 92.0 69 76 63.3 2.1 —-4.0 1.2
1990 =5.1 85.8 69 78 48.9 2.4 —-6.0 1.3
1991 3.7 82.2 68 77 62.4 2.1 —-4.0 1.1
1992 8.3 86.8 65 76 62.6 2.1 —4.0 1.0
1993 —10.1 79.6 59 77 64.5 2.1 —-4.0 1.7 -1.9
1994 —14.7 79.1 62 72 49.0 2.4 1.3 -5.0
1995 9.3 91.9 51 64 55.9 1.9 1.3 —6.0
1996 —6.1 79.6 38 48 44.8 2.7 -5.5
1997 1.0 88.1 26 35 81.1 —-6.0
1998 —-1.2 86.2 11 29 81.9 —-52
1999 —4.5 78.2 6 28 81.9 =5.1
2000 16.6 93.7 33 51 81.0 —54 1.9
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FI1G. 9. (top) Forecast error of the regression model selected by the
F test (o, < 3%), and (bottom) forecast error of a prediction based
on the mean of the prior 25 yr. The regression model was constructed
from the 25-yr record prior to the year of forecast. The dashed line
shows the std dev of the monsoon rainfall.

of surface temperature is consistent with the physics of
monsoons being driven by the land—sea temperature
contrasts. Forecasts with all three predictors performed
much better than forecasts based on any two of the three
predictors. Thus, the predictive skill of the three-pre-
dictor model is not dominated by a single predictor. This
result suggests that the climate indices are not neces-
sarily useful predictors by themselves, but rather that
the indices are useful in combination with other pre-
dictors. This result is not unexpected, since the F test
selects P predictors only if these predictors explain sig-
nificantly more variance than any model with fewer pre-
dictors.

Table 7 and Fig. 9 reveal that prediction models can
give errors that exceed the standard deviation of mon-
soon rainfall. Such large errors occurred 8 out of 26 yr,
which is the expected frequency for normally distributed
errors with standard deviation equal to the rmse of 7
cm. Other selection criteria produce even higher fre-
quencies. Unfortunately, Table 7 suggests little basis for
anticipating the timing of large errors. For instance,
large errors occur for both large and small values of s,
and s,.

It is probably worth pointing out that, for the values
of the critical significance level «, found to be useful,
the F-test criteria rarely selects more than three predic-
tors.

6. The 1989-2000 forecasts by the India
Meteorological Department

The prediction models explored in this paper differ
dramatically from the models currently used by the India
Meteorological Department (IMD). Since 1989, the
IMD has issued forecasts of monsoon rainfall based on
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the power regression model proposed by Gowariker et
al. (1989, 1991) and Thapliyal and Kulshrestha (1992).
This model has the form

R + SRR
oo _ o+ cl.< ' a’) o 13)
Bo i=1 Bi

where R represents the Indian monsoon rainfall, X, rep-
resents the ith physical parameter, and the as, Bs, ps,
and Cs are constants chosen to produce good forecasts
on historical data. In contrast to the models examined
in this paper, the power regression model is nonlinear
and utilizes a relatively large number of physical pre-
dictors (namely, 16). Our results, however, suggest that
the use of such a large number of predictors ought to
lead to artificial skill and poor forecasts of independent
data. Given the social and economic importance of mon-
soon forecasts, it is of interest to examine this model
more closely.

First note that model (13) contains 49 independent
parameters. To see this, note that the Bs in (13) can be
absorbed with the Cs without loss of generality, leaving
a total of three parameters per predictor, plus one con-
stant. Gowariker et al. (1989) estimated the value of the
49 parameters from 37 yr of data. In principle, this
model could fit 37 yr of data perfectly. These consid-
erations leave no doubt that the power regression model
as used by the IMD is subject to artificial skill.

Given the above considerations, how is it that the
final forecast by the IMD has proven ‘‘reasonably ac-
curate”? We cannot address this issue comprehensively
because we do not have access to the actual data used
by the IMD to produce their forecasts. It should also be
noted that the total Indian rainfall dataset used in this
paper, based on the data of Parthasarathy et al. (1995),
differs slightly from that of the IMD in that the latter
includes the hilly and island areas. Nevertheless, we
believe that one clue to the answer is the following.
Figure 10 shows a 10-yr running rmse of two forecasts:
1) a forecast by the F-test model derived strictly from
the prior 25-yr record of dataset II, and 2) a forecast
equal to the mean of the prior 25-yr record. Importantly,
the climatology forecast performed unusually well in
the last 5 yr—the MS error of the climatological forecast
for the period 1989-2000 is 5.5 cm—whereas for any
10-yr period in 1970-95 the error is 7.5 cm or more
(see Figs. 9 and 10), reflecting the fact that monsoon
rainfall has been ‘“‘normal’ (within 10% of the mean)
since 1989.

The above results may help explain the reasonably
accurate forecasts by the IMD. As stated in Thapliyal
and Kulshrestha (1992), the final forecast by the IMD
is not based solely on the power regression model, but
rather on a weighted combination of different forecasts.
The precise details of this procedure do not appear to
be available in the published literature. Nevertheless, if
the procedure effectively adjusts the forecast toward the
climatology of the immediately preceding period, then
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FiG. 10. The 10-yr running rmse for the regression models selected
by the F-test criteria (solid), and of the errors of the forecast based
on the prior 25-yr climatology (dash).

this adjustment will improve the forecast in a mean-
square sense in the special period 1989-2000, because
in this period a running climatology happens to give a
good forecast. That this adjustment occurs is consistent
with the fact that the IMD predicted normal rainfall (i.e.,
within 10% of the mean) for all years during 1989—
2000, even though the model has a high probability of
extreme forecasts due to nonlinearity and the large num-
ber of predictors.

7. Summary and conclusions

The fundamental basis of statistical prediction is that
time-lagged correlations observed in the past will persist
into the future. In practice, however, the unknown en-
semble averages required in statistical regression must
be estimated from a finite sample. As a result, statisti-
cally derived prediction equations are subject to sam-
pling errors that increase with the number of predictors
on which the regression equation is developed. These
sampling errors lead to the impression that the regres-
sion model fits the data better and better as more pre-
dictors are used. However, the forecaster’s goal is not
to fit the dependent data, but to predict new, independent
data. Even if the predictand/predictor correlation esti-
mated from a finite sample is relatively high, the pre-
dictive skill of models with many predictors can be very
low, perhaps even worse than a prediction based on the
prior climatology.

This paper proposed a strategy for selecting the best
linear prediction model. In this strategy, all possible
prediction models of fixed order are calculated and cross
validated to determine the model that minimizes the
mean-square error in the independent dataset. This pro-
cedure, called the screening procedure, essentially elim-
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inates the models at each order that are not likely to
perform well on a new, independent dataset. Then, the
mean-square prediction errors of every model are com-
pared with those of every other model to test whether
the difference in error variances is statistically signifi-
cant. This test is applied to every pair of screened re-
gression models, starting with a zero-predictor model
(i.e., a forecast based on climatology) and progressing
toward increasing number of predictors, until no sig-
nificantly better model can be found.

To test whether the above strategy can produce useful
forecast models, the procedure was applied to every
continuous 25-yr segment in the monsoon rainfall rec-
ord, then the resulting model was used to predict the
immediately following (independent) 26th year. The
strategy produced better average forecasts for all periods
and for all predictor subsets than all other nontrivial
methods investigated (e.g., choosing either the model
with the most favorable C, statistic, the model that ex-
plains the most variance in the independent data, or the
model that utilizes all possible predictors). If the pre-
dictors are restricted to ENSO and NAO indices, then
none of the strategies selected models that perform con-
sistently better than a prediction based on the clima-
tology of the prior 25 yr, except in the period 1975-
2000. We find no evidence to suggest that the ENSO
and NAO indices, by themselves, are useful predictors
of Indian monsoon rainfall prior to 1950 (25 yr prior
to 1975). This conclusion covers most finite difference
or smoothed versions of these indices, since the pool of
predictors included these indices at six different lead
times. If, however, the pool of predictors are augmented
to include upper-level (500-hPa ridge location) and land
surface data (DJF Eurasian temperature), then all of the
strategies select models that perform better than cli-
matology, with the screening and the F-test criteria per-
forming best of all. Importantly, every forecast model
investigated had at least a 20% probability of large error
(an error exceeding the standard deviation of the mon-
soon rainfall).

Our results give little support to the idea that a large
number of predictors should be used for long periods
of time. None of the model selection criteria investigated
here indicate the use of more than two to three predic-
tors, and all of these criteria produced better forecasts
on average than the regression models that utilized all
the predictors. Also, the screening and F-test procedure
frequently selects climatology (zero predictors) over any
forecast derived from the predictors. Finally, the F-test
criterion usually selects fewer parameters than a crite-
rion based on maximizing the independent variance, yet
the F test performs better on average (cf. “F test” with
“maximum s,”” in Tables 4-6).

On the basis of the available record published in sci-
entific journals, we argued that the power regression
model used by the IMD, which is nonlinear and utilizes
16 physical predictors and 49 independent parameters,
is subject to artificial skill and has not been proven to
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be clearly superior to linear models with a few predic-
tors. A fact that may help to explain the apparent recent
success of this model is that the period 1989-2000 hap-
pens to be a rare period in which predictions based on
the climatology of the prior 25 yr are unusually good.
This reflects the fact that the monsoon rainfall has been
near normal every year during this period. Consequent-
ly, any forecast model that predicts near-normal rainfall
during this period will have a relatively small mean-
square error.

As with all statistical studies, we cannot eliminate the
possibility that some set of predictors other than those
used here could lead to significantly better predictions.
Nor can we eliminate the possibility that analysis of
longer datasets, or the use of nonlinear models, might
produce better prediction models than those found here.
Finally, our results cannot eliminate the possibility that
dynamically based, coupled ocean—land—atmospheric
models might predict monsoon rainfall with higher skill
than linear models.
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