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Abstract.

The predictability of the autumn, boreal winter, and spring seasons with foreknowledge
of sea surface temperatures (SSTs) is studied using ensembles of seasonal simulations of
three General Circulation Models (GCMs): the Center for Ocean-Land-Atmosphere Studies
(COLA) GCM, the National Aeronautics and Space Administration Seasonal to Interannual
Prediction Project (NSIPP) GCM, and the National Centers for Environmental Prediction
(NCEP) GCM. Warm-minus-cold composites of the ensemble mean and observed tropical
Pacific precipitation, averaged for the three warmest El Nino and three coldest La Nina
winters, show large positive anomalies near the dateline, which extend eastward to the South
American coast. The same is true for composites of the spring following the event. In the
composites of the autumn preceding the event, the precipitation is weaker and shifted off the
equator in the far eastern Pacific, where equatorial SSTs are too low to support convection.
The corresponding boreal winter 200 hPa height composites show strong signals in the tropics
and midlatitudes of both hemispheres. The subsequent spring composites are similar, but
weaker in the northern extra tropics. In the preceding autumn composites, the overall height
signal is quite weak, except in the southern Pacific.

The model dependence of the signal (variance of ensemble means) and noise (variance about
the ensemble means) of the seasonal mean 200 hPa height is small, a result that holds for all
three seasons and is in contrast to earlier studies. The signal to noise ratio is significantly
greater than unity in the tropics (all seasons), the northern Pacific and continental North
America subtropics (boreal winter and spring), and the southern Pacific subtropics (boreal
autumn).

Rotated empirical orthogonal function analysis of the tropical Pacific SST recovers El Nino
- like dominant patterns in boreal winter and spring, but emphasizes two SST patterns in
autumn, one with largest SST in the far eastern tropical Pacific, and one a maximum nearer
the dateline. Two methods are used to assess the precipitation and height field responses
to these patterns: linear regression of the ensemble means on the principal component, (PC)
time series of SST and identication of patterns that optimize the signal-to-noise ratio. The
two methods yield remarkably similar results.

The optimal height patterns for boreal winter and spring are similar, although the spring
response over the northern extra tropics is somewhat weaker, and some subtle changes in
phase are found in all three GCMs. The associated optimal time series have serial correlations
with the leading PC of SST which exceed 0.9 for all GCMs for winter and spring. For
autumn the time series of the leading two optimal patterns each has a serial correlation with
the corresponding PC of SST which exceeds 0.7 for the COLA and NSIPP GCMs. The
autumn 200 hPa height leading optimal pattern (response to eastern Pacific SST) is quite
weak, representing nearly uniform tropical warming. The second optimal pattern (response
to central Pacific SST) shows a robust wave train in the southern Pacific, with a consistent
belt of low height over northern midlatitudes.



1. Introduction. Boundary forced predictability on the seasonal time scale depends in
a direct way on the extent to which the boundary condition anomalies, primarily tropical
sea surface temperature (SST), produce strong anomalous atmospheric heat and momentum
sources. Enhanced predictability in midlatitudes is only realized if the remote circulation
forced by these heat and momentum sources is strong enough and consistent enough to be
distinguishable from the chaotic internal variability (sometimes called noise) of the midlati-
tude atmosphere. The presence of this internal variability can lead to substantial uncertainty
in the expected seasonal mean even in the presence of large boundary anomalies.

The need to understand the characteristics of this variability, and to learn how to dis-
tinguish it from the response forced by the boundary, has motivated a great deal of recent
general circulation model (GCM) based research (Straus and Shukla, 2000, 2002; Schubert
et al., 2001; Shukla et al., 2000a,b; Chang et al., 2000; Brankovi¢ and Palmer, 2000; Kumar
et al., 2000, for example). General circulation models (GCMs) are particularly useful in this
regard, since they can provide estimates of the signal and the noise via an ensemble of sea-
sonal solutions generated with identical boundary conditions of SST, but with different initial
conditions. The disadvantage of using GCMs is of course that the signal and noise estimates
are likely to be model dependent and may not be accurate. Exploring this dependence is
one of the goals of Dynamical Seasonal Prediction (DSP) project (Shukla et al., 2000a), a
multi-institutional cooperation aimed at better understanding seasonal predictability. (The
July 2000 Part B issue of the Quarterly Journal of the Royal Meteorological Society was

devoted to the DSP project and its European equivalent, the PROVOST project.) Recently,



other authors have also recognized the importance of exploring the model dependence of
predictability estimates (Hoerling et al., 2001, for example).

Traditionally, research on SST-forced seasonal predictability has focused on boreal winter,
when the tropical Pacific SST anomalies associated with ENSO (the El Nino Southern Oscil-
lation) episodes are strong, the radiative forcing of the general circulation is nearly constant,
and the response in the northern extra tropics well defined. Recent work on the response to
ENSO during other times of the year has suggested that the early (boreal) spring response
is distinguishable from the noise, but that during summer and autumn the signal is much
weaker (Brankovi¢ and Palmer, 1997, 2000; Kumar and Hoerling, 1998; Livezey et al., 1997).
Schubert et al. (2002) (hereafter S2) do show that during summer the concomitant reduction
in noise leads to signal-to-noise ratios that are comparable to those found for winter.

The purpose of this paper is to systematically explore and compare characteristics of the
SST-forced signal and the associated noise in boreal autumn, winter, and spring, utilizing en-
semble simulations made with three GCMs. We compare the signal patterns which optimize
the signal to noise ratio for the three GCMs, and relate them to different patterns of tropical
SST forcing. The optimal patterns depend on the complete set of ensemble simulations,
not just the ensemble mean. The ability to access these patterns is a second attraction of
using GCM ensemble simulations. Comparison of these optimal patterns among GCMs for
tropical SST forcing has not previously appeared in the literature.

This paper extends previous DSP intermodel comparison studies from the winter season

to the transition seasons in a unified framework. Ensembles of seasonal simulations of the



three GCMs we study (see Table 1) were generated for the boreal autumns and springs for the
18 years 1981-1998, using the same observed SSTs (Reynolds and Smith, 1994) and realistic
initial conditions. In order to facilitate comparison of the transition season results with the
boreal winter season, we have also run winter cases using the calendar years of 1981/82 -
1998/99 for the same three GCMs. (See section 2 for further details of the GCMs.) The
winter results will help to put the transition seasons in context.

We find that in boreal spring, as in winter, large eastern tropical Pacific SST anomalies
force a significant and realistic signal in the tropical Pacific and in both the northern and
southern extratropics. The signal in boreal autumn is much weaker, however. In order to
highlight the seasonal differences in a familiar context, we show time series of the pattern
correlation of 200 hPa height between the ensemble (seasonal) mean anomaly of each GCM
and the seasonal mean anomaly from observations (Figure 1). The pattern correlation is
taken over the Pacific North-America region (15°N — 70°N, 180°W — 60°W). The years are
presented (from left to right) in order of increasing absolute value of the Nino-3 index, with
red (blue) indicating El Nifio (La Nina) years. The three bars shown for each year indicate
the result for the three GCMs (always in the same order). For the winter season (middle
panel), both the strength and consistency of the GCM pattern correlations are strongly
related to the magnitude of the Nino-3 index (Shukla et al., 2000a), and this is true to
some extent for the boreal spring season (shown in the bottom panel). However, the boreal
autumn (top panel) shows much less skill and consistency.

These results, however, are based solely on the Nino-3 index. To explore the boundary



forcing more systematically, we analyze the near global (50°S — 50°N) SST anomalies to
obtain the dominant patterns of variability, and extract the response to these anomalies from
the ensemble GCM simulations. Section 2 describes both the GCMs and observations used,
the SST boundary forcing, and the ensembles of seasonal simulations. Section 3 describes a
composite analysis of mean precipitation and 200 hPa height based on strong El-Ninio and
La-Nina episodes for autumn, winter and spring seasons. Estimates of the signal and noise
variance in precipitation and in 200 hPa height obtained from the different ensembles are
discussed in Section 4. A nearly global pattern analysis of the SST anomalies is presented
in Section 5, along with the associated tropical precipitation response. The global height
response of the GCM ensemble means to these patterns (obtained by linear regression) is
shown in Section 6. A separate analysis of the height patterns that optimize a suitably
defined signal-to-noise ratio is presented in Section 7. A synthesis and the conclusions are

presented in Section 8.

2. GCM Experiments and Data.

(a) GCMs. The three GCMs utilized are those of the Center for Ocean-Land- Atmo-
sphere Studies (COLA), the National Aeronautics and Space Administration Seasonal to
Interannual Prediction Project (NSIPP), and the National Centers for Environmental Pre-
diction (NCEP). The models are described in more detail in subsections (d)-(f). Some overall
characteristics are given in Table 1.

(b) Observed data. The SST used in all GCM simulations, and for the diagnostics in

this paper, are the OISST of Reynolds (see Reynolds and Smith 1994 ). The COLA GCM



utilizes the SST data on a weekly basis, while the NSIPP and NCEP GCMs use the monthly
SST data. All diagnostics presented use only seasonal means. The observed seasonal mean
precipitation is obtained from the Xie-Arkin dataset (Xie and Arkin, 1997), while the seasonal
mean 200 hPa geopotential heights are obtained from the NCEP reanalysis (Kalnay and
coauthors, 1996).

(¢) Simulations. The boreal autumn simulations were initialized in August and were run
through the end of November for the years 1981-1998. The number of ensemble members
for each GCM is given in Table 1, and the details of the initial conditions are given in
subsections (d)-(f). The boreal winter simulations were initialized in November for the years
1981-1998 and were run through the following March. The boreal spring runs were initialized
in February of the years 1982-1999 and run through June.

(d) COLA GCM. This GCM is Version 2.2 of the COLA GCM, run at horizontal spectral
resolution of triangular T63, with 18 sigma levels. It uses the dynamical core of the National
Center for Atmospheric Research Center Community Model version 3 (CCM3) described
in Kiehl et al. (1998); otherwise it is as described in Schneider (2002). The dependent
variables of the model are spectrally treated, except the moisture variable, which is advected
using the semi-Lagrangian technique. The land surface model (LSM), which is coupled to
the atmospheric model, is the Simplified Biosphere Model (SSiB) documented in Xue et al.
(1991). The parameterization of deep convection is the relaxed Arakawa- Schubert scheme
(Moorthi and Suarez, 1992). For further details consult Schneider (2002).

There are 10 members in each ensemble. Initial conditions (ICs) 1-5 for the boreal autumn



runs are obtained from NCEP reanalyses for 00 UTC on the last five days of August. Initial
conditions 6-10 were obtained from ICs 1-5 by adding a perturbation which consists of the
difference between the analyses 12 hours after and 12 hours before. The initial conditions for
the boreal winter (spring) runs were obtained in the same manner utilizing the reanalyses
for the last five days of November (February). The land surface initial conditions were taken
from a climatology compatible with SSiB.

(e) NSIPP GCM. This GCM is the NSIPP-1 AGCM. It uses the grid-point 4th-order
dynamical core of Suarez and Takacs (1995), and was run with a horizontal resolution of
2° latitude by 2.5° longitude, and with 34 vertical sigma levels. The parameterization of
deep convection is the relaxed Arakawa-Schubert scheme (Moorthi and Suarez, 1992). For
further details consult Bacmeister and Suarez (2002). The atmospheric model is coupled to
the Mosaic LSM described by Koster and Suarez (1992).

There are 9 members in each ensemble. Initial conditions (ICs) for the boreal autumn
runs were obtained from the NCEP reanalyses from 00 UTC of August 13-17, and from
12 UTC of August 13-16. The ICs for the boreal winter (spring) runs were obtained in the
same manner utilizing the reanalyses for November (February) 13-17. The land surface initial
condition for each ensemble member and for all years of the boreal winter runs was taken
from an arbitrary December state from a previous experiment. Simulations for the boreal
autumn and spring seasons took the land surface IC from a previous multi-year continuous
simulation made with observed SSTs, using the corresponding month and year. (Thus for

the autumn and spring runs, the land initial states can potentially contribute to the forecast



skill indirectly through the SST that forced the previous runs.)

(f) NCEP GCM. This GCM is the NCEP Seasonal Forecast Model (Kanamitsu et al.,
2002). The model is a spectral model with triangular resolution of T62, with 28 sigma levels
in the vertical. It utilizes the same parameterization of deep convection as the COLA and
NSIPP GCMs. The land processes are represented by the two-layer LSM of Pan and Mahrt
(1987). Further details are given in Kanamitsu et al. (2002).

There are 10 members in each ensemble. Initial conditions (ICs) for the boreal autumn
runs were obtained from the NCEP reanalyses from 00 UTC and 12 UTC of September
1-5. The ICs for the boreal winter (spring) runs were obtained in the same manner utilizing
the reanalyses for November (February) 1-5. The land surface conditions were taken from a

climatology compatible with the land surface model.

3. The ENSO-Related Global Signal Composite seasonal means for the boreal au-
tumn, winter, and spring seasons based on the traditional wintertime ENSO framework serve
as a useful reference. The three winters with the highest values of Nino-3! (JEM 1983, 1998,
1992) are defined as warm winters, while those with the lowest values of Nino-3 (JEM 1989,
1985, 1999) are defined as cold winters. (See Figure 1). The autumns preceding these winters
and the springs following them are considered to be part of the three warm and three cold
episodes, even though they do not necessarily have the largest magnitude of Nino-3. Sub-

tracting the average of a seasonal mean field over the three cold episodes from the average

INifio-3 is defined as the SST anomaly averaged over the area 150°TW — 90°W, 5°S —5° N, and is obtained

from the data of Smith et al. (1996).



of that field over the three warm episodes gives a simple composite measure of the warm
minus cold anomalies.

The composite SST warm-minus-cold differences are shown by the contours in Figure
2, while the shading indicates regions where the winter-averaged SST for the warm events
exceeds 28°C, giving a rough indication of where conditions are favorable for convective
activity. While autumn (Figure 2a) SST anomalies are as large as during winter over much
of the eastern Pacific, the temperature along the equator in autumn east of 135°W is too low
to support convection even in the warm years. Conversely, while the spring anomalies over
much of the eastern equatorial Pacific are smaller than their winter counterparts, the water
is warm enough to support convection along the equator right up to the South American
coast. Here the winter (spring) anomalies exceed 3° (4°).

Figure 3 shows the corresponding differences for the observed precipitation over the
tropical Pacific basin. The winter anomaly (middle panel) shows the familiar ENSO signal,
with largest positive anomalies just east of the dateline and an eastward extension along
the equator right up to the coast of South America. The springtime precipitation anomaly
(bottom panel) is very similar in structure to that in the preceding winter, with a somewhat
reduced magnitude in the central Pacific. The equatorial anomalies in the eastern Pacific
are just as strong as in winter. In contrast, the preceding autumn’s composite anomaly (top
panel) is considerably weaker east of 120°W, especially along the equator, consistent with
the position of the 28°C' isotherm in Figure 2. The autumn anomalies near the dateline are

as strong as in spring. In all seasons, negative anomalies are seen poleward of about 10° in



both hemispheres in the central Pacific and in the western Pacific.

The corresponding GCM seasonal-mean, warm-minus-cold precipitation anomalies are
shown in Figure 4. Here we have averaged the seasonal-mean composites over all members
of the ensembles and over the three GCMs. The main conclusions gleaned from the obser-
vations are unchanged: the spring warm-minus-cold composite is as strong in the eastern
Pacific along the equator as in winter, while the autumn composite difference is smaller here.
However, the GCMs do show a stronger than observed precipitation anomaly in the central
Pacific during spring than during autumn.

The warm-minus-cold composites for the global 200 hPa height field obtained from re-
analyses are shown in Figure 5. The winter warm-minus-cold composite shows the expected
dramatic warming in the tropical Pacific, the well-known ENSO response pattern over the
Pacific North American (Pac-NA) region (see for example, Straus and Shukla 2000, 2002),
and a quite well-defined wave train in the Southern Hemisphere. In addition, a high latitude
dipole over the North Atlantic region and a mid-latitude dipole over East Asia are seen.
The following spring height composites contain the same basic structures, although with a
reduced magnitude and with a distinct shift in the enhanced Aleutian Low. The anomalies
over the Pac-NA region nearly disappear in the preceding autumn, although the Southern
Hemisphere response and the dipoles over the North Atlantic and East Asia are discernible.
The GCM composite 200 hPa height response is shown in Figure 6, averaged as before over
the ensembles of all three GCMs. The main tropical, Pac-NA region and Southern Hemi-

sphere observed features are all clearly seen in the mean GCM results, as well as the low over



subtropical East Asia. During spring, the high over North America is more distinct than in
observations, and is shifted to the west compared to nature. The high latitude dipole and
the highs over mid-latitude East Asia are missing, suggesting that they are due to climate
noise. The zonally symmetric anomalies suggested by the observations and found even more
clearly in the GCM results have been pointed out before (Hoerling et al., 1995).

These preliminary results suggest that while the spring looks in some sense like a weaker
version of winter (with some of the Northern Hemisphere features shifted), the autumn
response to tropical SST forcing is fundamentally different. While this ENSO oriented
analysis derived from the Nino-3 index is useful, the weak autumn response suggests we

should look to other tropical SST anomaly signals.

4. Signal and Noise Variance. A major benefit of GCM simulations in the study of
seasonal predictability is the ability to separate the forced SST response from the variability
of the seasonal mean due to internal chaotic dynamics. The overall level of internal variability
(the noise variance) can be estimated from the average intra-ensemble variance, while a
measure of the SST forced signal is the temporal variance of the ensemble mean, corrected
for the presence of noise (see Scheffé 1959, p225; also Rowell et al. 1995; Straus and Shukla
2000). The panels in Figure 7 show the signal variance of seasonal mean 200 hPa height,
the internal (noise) variance, and their ratio for the three GCMs for boreal autumn. The
signal variance (shown in panels (a)-(c)) consistently shows a large signal in the Southern
Hemisphere and a smaller signal over the Pacific and East Asia in all three GCMs. The

signal over North America is very weak. The noise variance (shown in panels (d)-(f)) is also
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consistently large in these same regions, leading to a generally weak signal-to-noise ratio
outside the tropics in all three GCMs. This dimensionless ratio is shown in panels (g)-(i).
Significance at the 95% (99%) levels is shown by the light (dark) shading. The significance
test we use refers to rejecting the null hypothesis that the signal to noise ratio » < 1, which
leads to a stricter test than that commonly used (null hypothesis r = 0). See Scheffé (1959,
pg. 227) for the calculation of significance. Outside the tropics, only the subtropical southern
Pacific shows a ratio which is significant.

The corresponding results for boreal spring are shown in Figure 9. All three GCMs have
strong signals in the Pacific and over North America, in the Southern Pacific, and even
in the tropics, the latter reflecting the overall warming of the tropics during warm events.
Again, the noise tends to be strongest where the signal is strongest, but now the ratio is
significantly larger than 1.0 over subtropical North America, and for the NCEP GCM over
the mid-latitude Pacific as well. As before, highly significant ratios are seen over the tropics,
indicating very little noise there.

The autumn and spring results should be put in the context of the boreal winter variances
given in Figure 8. (Note the differences in the contours used.) The winter signal variances
are stronger than either transition season, with the large signals over the Pac-NA region
dominating the tropics and Southern Hemisphere. The North Pacific is also a region of large
noise (particular in the COLA GCM), yet the ratio is still significantly greater than 1.0 in
the northeast Pacific and over the subtropical North American continent.

Some model dependence to the signal and noise variances can be seen in Figures 7 - 9. In
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particular the COLA GCM tends to have a larger noise variance, especially over the Pacific
during winter. Yet the discrepancies are in general less than those shown for an earlier
generation of models used in Shukla et al. (2000a) indicating some convergence may have

been achieved. We return to this point in the discussion.

5. SST patterns. In order to objectively organize the dominant seasonal mean patterns
of SST forcing anomalies, we have performed a rotated empirical orthogonal rotation (REOF)
analysis of the near global (50°S — 50°N) SST anomalies, using the same SST data which
forced the GCMs (see section 2). For boreal winter and spring there is a large difference
in the cumulative globally averaged temporal variance explained by the first two REOF
patterns, with the leading REOF associated with about three times the variance of REOF-2
(see Table 2). In boreal autumn the variances explained by the leading two REOFs are closer
(31% vs. 19%), and so we consider both modes. Figure 10 shows these two REOF patterns,
as well as the leading REOF patterns for winter and spring. REOF-1 for all three seasons
is dominated by warming in the eastern Pacific, with the winter pattern corresponding to
the classical ENSO signal, and the spring and fall leading REOFs having a maximum just
off the South American coast. This large eastern tropical Pacific weighting leads naturally
to large correlation with the Nino-3 index (see Table 3), and the corresponding time series
(principal components, or PCs) generally have peaks during the strong ENSO episodes of
fall /winter /spring 1982/83, 1986/87, 1988/89, 1991/92, and 1997/98 (see Figure 11). The
second REOF pattern for autumn has a broad maximum in the central Pacific, and a strong

positive anomaly in the North Pacific. Its time series is not well correlated with Nino-3,
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nor does it have peaks for the autumns preceding the largest ENSO events (Figure 11, top
panel). Since the warmest waters are generally confined to the central Pacific during autumn
(as seen in Figure 2), this mode of SST anomaly is expected to be important for forcing an
atmospheric response. The two patterns shown for autumn here are quite similar to those

shown by S2 for boreal summer (their Figure 6).

6. Response of Precipitation.  The linear response of seasonal mean precipitation to
the dominant pattern of SST during JFM and MAM is obtained by linear regression of this
field on the associated PC of SST. For the GCMs, this regression is done using the ensemble
mean. The results (not shown) are consistent with the warm minus cold composites seen in
Figures 3 and 4. The two seasons show a similar response dominated by positive anomalies
over the central and eastern equatorial Pacific (and negative anomalies surround this to
the north, south, and west, in a characteristic ”horseshoe” shape). The peak magnitude of
the boreal spring response is somewhat smaller than in winter, again consistent with the
composites.

The linear response of the ensemble mean precipitation to the two leading autumn SST
patterns is estimated by regression of the means on PC-1 and PC-2, as shown in Figures
12 and 13 for the observations and all three GCMs. The regression on PC-1 is similar to
the Nino-3 composites shown earlier, with a dominant central Pacific positive anomaly that
weakens and extends towards the South American coast. The regression on PC-2 has some
similarity to that for PC-1, but the dominant positive anomaly in the tropical Pacific is more

closely confined near the dateline. Also, all three GCMs show a strong negative anomaly in
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the western Pacific north of the equator.

By using regression of the GCM ensemble mean on the seasonal-mean SST to assess the
forced signal, we are making the assumptions that the signal depends only the seasonal mean
of the SST, and that this dependence is linear. For example, Straus and Shukla (2002) argue
that the midlatitude height signal is more linearly related to the tropical diabatic heating
than to the SST. In order to confirm that the results obtained by the regression method are
not very sensitive to these assumptions, we also use an alternate approach to finding the
dominant forced signal. In this method, which is equivalent to the signal detection technique
discussed in Venzke et al. (1999), the GCM seasonal means from all ensemble members are
used to find a set of patterns, ordered by the magnitude of the signal-to-noise ratio. For each
pattern, the signal is defined as the temporal variance of the ensemble mean of the time series
associated with that pattern, and the noise is defined as the average intra-ensemble variance
of the time series (see the Appendix for details). This method utilizes all ensemble members,
not just the ensemble mean, and makes no assumptions about what the appropriate forcing
field or time-scale is. By comparing the results of these two methods, with their distinct
approaches to the estimation of the forced signal, we aim to assess the reliability of the
results.

The two leading optimal patterns for precipitation are shown for all three GCMs for
boreal autumn in Figures 14 and 15. Comparing Figure 14 with Figure 12, and Figure 15
with Figure 13, one sees that the patterns deduced from linear regression on the SST time

series are extremely well-reproduced by the leading optimal patterns, although the overall
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magnitude of the response is not always the same for the two methods. This suggests that

the tropical responses to the leading two leading modes of SST are, in fact, distinct.

7. Response of Global Height. The patterns which optimize the signal to noise
ratio give an estimate of the GCM ensemble response to prescribed SST forcing that does
not assume the response is linear in the forcing, and which takes into account the climate
noise given by the ensemble spread. Figures 16 and 17 show the leading optimal pattern
for boreal winter and spring, respectively, for the three GCMs for seasonal mean 200 hPa
height. The models all show the expected tropical warming (particularly in the eastern
Pacific) for both seasons, and well-defined wave trains in both hemispheres in the 180°F
to 300°F longitude belt. The spring pattern for each GCM is very similar in structure to
the corresponding winter pattern, but with a smaller amplitude and with systematic shifts
in northern midlatitudes. The winter maps in the Pacific North American region look very
similar to the ENSO-related pattern familiar from recent literature (see for example Straus
and Shukla 2000, 2002 for maps and references). The enhanced Aleutian Low, the subtropical
low over continental North America, and the high over northeastern Canada are present in
all maps. In general the COLA and NSIPP GCM’s responses are very similar; the NCEP
GCM differs in producing a weaker and slightly displaced Canadian high, and a quite strong
and broad subtropical response over Asia. Not only do all the models show a weaker response
in spring than in winter, but both the low over the North Pacific and the Canadian high are
shifted westward consistently in the models.

In order to determine whether these optimal patterns are consistent with the assumption
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of linearity with respect to the forcing, we computed the serial correlation coefficient of the
time series associated with the leading optimal pattern with the PC of the first rotated EOF
of SST for boreal winter and spring (Figure 11). The results (see Table 4) show very high
values of the correlation (exceeding 0.90 in all cases), indicating that these patterns can to a
good approximation be thought of as linear responses to the SST forcing patterns represented
in Figures 11c and 11d. As would be expected, the linear regression of the ensemble mean
height fields on the leading SST PC for winter and spring (not shown) yield patterns very
similar to those shown in Figures 16 and 17.

The results for boreal autumn are quite different. The leading two optimal modes are
shown for all GCMs in Figures 18 and 19. The leading optimal mode has very weak features
(note the contour interval in Figure 18). For the COLA and NSIPP GCMs a nearly uniform
tropical warming dominates, with a remnant of some of the midlatitude winter and spring
features appearing. The NCEP GCM shows a nearly uniform global warming. The second
optimal pattern, defined as the pattern which optimizes the signal to noise ratio subject to the
constraint that it is independent of the first pattern, bears some similarity to the boreal spring
responses. In particular, the enhanced Aleutian Low, along with its extension westward into
East Asia, is seen in all GCMs, and even a weak eastward extension across southern North
America is noted in the COLA and NSIPP responses. The Southern Hemisphere wave
trains are stronger than in either winter or spring, and are slightly shifted both westward
and towards the equator.

The interpretation of each of these patterns in terms of SST forcing is facilitated by the
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hypothesis that each is linearly related to the corresponding SST rotated EOF. The corre-
lation coefficients for both modes shown in Table 4 give some support for this hypothesis,
more so for the COLA and NSIPP GCMs than for the NCEP GCM. The notion that only a
generalized warming (or cooling) of the tropical belt is forced by the leading SST pattern is
consistent with Figure 2, which implies that strong regional convective forcing in the eastern
Pacific cannot be effective on the seasonal-mean time scale. This convective forcing does
occur in the central Pacific (as in the second SST pattern), and leads to wave trains in both
hemispheres. While the particularly strong central Pacific wave train in the Southern Hemi-
sphere (during austral spring) is interesting as an example of a forced stationary response, it
also may have some practical value for seasonal forecasts over New Zealand. The secondary
wave train in the western Pacific south of the equator seen in the COLA GCM is presumably
related to the equatorial anomalies of precipitation seen in Figure 13.

It is noteworthy that the boreal autumn height response seen here bears some similarity to
ensemble GCM results obtained for summer using the NSIPP-1 GCM (see S2). As mentioned
earlier, the leading two EOFs of SST shown in S2 (their Figure 6) bear a strong similarity to
Figures 10a and 10b: the leading EOF is dominated by warm SST in the far eastern tropical
Pacific, with some Indian Ocean signal, while the second EOF shows the dominant warming
in the central Pacific. The boreal summer mean 200 hPa height responses obtained by S2
using linear regression on the SST PCs (and shown in their Figure 9) bears some similarity to
Figures 18 and 19. The nearly uniform tropical warming seen in the leading pattern, and the

Southern Hemisphere wave trains and Northern Hemisphere lows seen in the Pacific, Asia
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and even over the Atlantic in the second optimal pattern are all seen in the corresponding
regression results of S2. However, the zonally symmetric nature of the summer response in

S2 is less evident in the autumn optimal patterns.

8. Summary and Conclusions. The characteristics of the seasonal mean response
forced by global SST boundary conditions are difficult to estimate directly from observations
because of the large noise component arising from non-linear, chaotic dynamics. The use
of ensembles of GCM simulations allows us in principle to obtain separate estimates of the
true boundary forced signal and the noise. This becomes particularly important during the
transition seasons when the signal is smaller than in winter. In this study we have extended
the Dynamical Seasonal Prediction project (Shukla et al., 2000a) by focusing on the transition
seasons. We have, in particular, examined the forced response, the noise variance, and their
model dependence utilizing ensemble seasonal simulations from three GCMs. The optimal
signal to noise patterns, used here for the first time to compare GCM results, make use of
the entire probability distribution of the ensemble, not just the ensemble mean.

The signal and noise variances of the GCMs for seasonal mean-200 hPa heights are
generally similar to each other and do not display the striking differences seen in earlier
studies (e.g. Shukla et al. 2000a ). The warm-minus-cold composite precipitation and
height fields for the boreal springs following the large winter events show patterns generally
similar to those for winter, both in the ensemble mean GCM results and in observations. In
particular, the equatorial eastern Pacific precipitation anomalies have similar magnitudes in

winter and spring. However, the composites using the boreal autumns preceding the large
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winter events show much weaker global height responses, and an equatorial precipitation
signal that is much weaker in the eastern Pacific, corresponding to the complete absence
of water warm enough to excite convection. These findings suggest that the winter ENSO
response paradigm of a wave train extending from the subtropical Pacific to North America
is more applicable to boreal spring than to boreal autumn.

This suggestion is strengthened by a fuller analysis of both the tropical SST patterns
and the global height response. The evolution of the pattern which has the largest signal
to noise ratio for 200 hPa height is highly correlated with the PC time series of the leading
SST REOF pattern for both boreal spring and winter, and for all three GCMs. Since the
optimum analysis of the height field does not assume linearity with respect to forcing, these
results suggest that, to leading order, the signal defined from optimal analysis is in fact linear
in SST.

During boreal autumn, two modes of SST variability and two global height signals emerge.
The eastern tropical Pacific SST variability excites a general (weak) tropical warming, but
cannot excite well-defined wave trains as in the other seasons because of the lack of warm
water in the eastern Pacific even during warm events. The SST pattern which strongly
weights the central equatorial Pacific is correlated at about the 0.70 level with a height
response showing both an intense wave train in the Southern Hemisphere and more modest
and more zonally symmetric features in the Northern Hemisphere. Strong similarities with
the summer season behavior found by S2 were noted

The ensemble simulations of the three GCMs utilized agree reasonably well with each

19



other in terms of the overall level of signal and noise, and on the forced signals and their
relationship to the dominant SST patterns in boreal spring and autumn. Spring appears
much closer to winter, with the dominant signal related to the eastern tropical Pacific warm
SST events via enhanced tropical convection there. The relatively weak mid-latitude sig-
nals in autumn, on the other hand, appear more closely related to warming and enhanced
convection in the central Pacific.

A caveat in this study relates to an important similarity of the three GCMs. All three
GCMs use very similar versions of the relaxed Arakawa-Schubert convection parameteri-
zation. Since this parameterization is centrally involved in converting the SST anomaly
provided as a boundary condition into a deep tropical convective heat source, its behavior
may have a strong effect on the simulation of the forced response. Further GCM comparisons,
encompassing a wider suite of model parameterizations, are needed.

The success of the technique used provides a framework for posing further dynamical
questions related to the transition season signals. For example, what are the roles of the
transients and of the propagation characteristics of the mean three- dimensional circulation
in modulating the tropical forced signals?” How important are intra-seasonal variations in

SST in altering the signals?
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GCM | Resolution | L | N Reference

COLA T63 18 | 10 Schneider (2002)
NSIPP | 2.0x2.5 |34 | 9 | Bacmeister and Suarez (2002)
NCEP T62 28 | 10 Kanamitsu et al. (2002)

Table 1: Summary of GCMs, showing horizontal resolution in triangular truncation for
spectral models, latitude by longitude resolution for the grid point model, number of vertical
levels L, and number of ensemble members N.

Season | Mode n | PctVar
SON 1 31.3
SON 2 19.3
JFM 1 33.1
JEM 2 9.4
MAM 1 28.5
MAM 2 11.8

Table 2: Percentage of total variance associated with rotated EOFs of SST, labelled as
PctVar.

Season | Mode n | Corr
SON 11 0.93
SON 21 0.34
JEM 11 0.98
MAM 1| 091

Table 3: Correlation between the SST PC associated with rotated EOF mode n and the
Nino-3 index.

Season | Mode n | COLA | NSIPP | NCEP
SON 1 0.72 0.74 0.47
SON 2 0.71 0.83 0.65
JFM 1 0.91 0.92 0.95
MAM 1 0.94 0.97 0.96

Table 4: Correlation between the SST PC associated with rotated EOF mode n and the
time series associated with optimal pattern n of 200 hPa height for each of the three GCMs.
Numbers in bold are significant at the 99% level.
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Appendix. Optimizing Signal-to-Noise Denoting the variable X at grid point 7, time
n, where 1 < n < N, and for ensemble member m, where 1 < m < M, as X;,,,, we consider

an expansion of X in terms of a set of patterns P and their associated time series «:
_ T T
Xinm = Z P’L Cpm (1)
=
where the index r denotes the mode, or pattern. The only prior constraint we place on this

expansion is that the time serie a be derivable from a linear transformation of the original

data:
1
Define the ensemble average with an overbar
1
and the time average with square brackets
Al = 3 5 A (4
m N m

Assuming that the climate (ensemble time mean) has been removed, so that

[ Xinm| =0 (5)

for all 7, we also then have:




The signal S and noise N are defined in terms of the time series of a particular mode, or

pattern:

and

—r\2
N = (0, — @)} (8)
Temporarily omitting the pattern index r, and considering the rth column of €] to be a

vector e;, we can write
S = (Z ezym) = [(Z eiym Z erjn)] = Z Z €; ([mejn]) € (9)

Defining

Aij = [XinXju] (10)

as the (square symmetric and positive definite) covariance matrix of the ensemble means,
the signal becomes:
— Ao, — T
(3

where lower (upper) case bold letters are used to refer to vectors (matrices), and the super-

script 1" denotes matrix transpose.
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In a similar way, using equation 2, the noise can be written as:

where we have defined the primes to denote the noise, that is, the deviations about the

ensemble mean:

mm

There is a relationship giving the time series of the noise in terms of the original data, derived

from 2 by subtracting the ensemble mean:

1< inm

o, =Y X (14)
i
Similar to the development following equation 9 we can write the noise as:
N = ZeiBijej = eT -B-e (15)
1

where B;; is the square symmetric and positive definite covariance matrix of deviations about

the ensemble mean:

Now the signal to noise ratio R = S/ just

R —

el . A.e
A—— 17
el B.e ( )
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The denominator can be diagnolized utilizing the vector g which is defined as
g=B'%2.¢ (18)

or
e=B1%2.g (19)

Note that the matrix B'/2 and its inverse are also square symmetric (and positive definite)
matrices. Using equation 19 it is straightforward to show that the ratio R can be written
as:
T
g -C-g

R=2<L__— < 20
g (20)

where the (square symmetric and positive definite) matrix C is defined as:
T
C=(B'Y*) -A-B7'/? (21)

Equation 20 is of Rayleigh quotient form. By the Rayleigh quotient theorem, the max-
imum varue of R is the maximum eigenvalue of C, and this maximum is obtained when g

equals the corresponding eigenvector. The eigenvectors are orthogonal:

(g")" - g* =6 (22)

which becomes, using equation 18:

(e")"-B-e* =4, (23)
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In these equations r and s refer to modes in the eigenvector expansion. This can be further
written, using equation 16 as:

Z Z egBijej = Z Z 6? [X;nijnm 6; = [O‘Zmaﬁm] = 57‘,8 (24)

where we have used equation 14.

The set of modes derived from this eigenvalue/eigenvector problem are identified as the
modes which optimize the signal to noise ratio R. Through equations 19, 1, 2 and 14, these
modes define the optimal patterns P” and the corresponding time series for the signal and
noise (a], and «!' ). Note that the patterns P are called the physical patterns, and the
patterns e” used to derive the time series are called the filter patterns. From equation 24

we see that the noise time series corresponding to different modes are independent.
The physical pattern P/ can be obtained directly by writing the version of equation 1 for

the noise:

mm

Xinm = 22 P oy, (25)

/s

o, averaging over time and ensemble members, and using

Multiplying this equation by «

equation 24 we obtain:

[0 X = X P oo, = P (26)

But from equation 14 for mode s

] Jjnm

al = elX! (27)
J
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so that:
P =3¢ | X umXhm) = 2 € Bij (28)
J J
When multiplied by €] and summed over i, this gives (using equation 24):
PIAAET (29)
]

showing that the physical and filter patterns form a bi-orthogonal set.
In practice, the fields Xj;,,, are represented in terms of an EOF expansion to carry out

these calculations. We retained 10 EOF patterns for each GCM.
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Figure 1: Each thin vertical bar shows the pattern correlation of the ensemble mean seasonal
mean 200 hPa height of a GCM with the observed seasonal mean over North America
15°N — 70°N and 180°W — 60°W.) The pattern correlation is computed separately for each
year and for each GCM; the bars show the results for the COLA, NSIPP and NCEP GCMs
from left to right. The years are ordered by the absolute value of the Nino-3 index, increasing
to the right and shown by the red bars. Red (blue) numbers indicate warm (cold) years. The
top panel shows results for boreal autumn (Sept.-Nov.), the middle panel for boreal winter
(Jan.-March), the bottom panel for boreal spring (March-May).
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Figure 2: Warm-minus-cold composite seasonal mean SST, in degrees C. Shading indicates
regions where the composite warm SST exceeds 28°K. The warm and cold composites are
taken over years based on the value of Nino-3 index for boreal winter; the winter definition
applies to the preceding autumn and following spring. See text for details. (a) Autumn, (b)

Winter, (c¢) Spring composite differences.
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Figure 3: Warm-minus-cold composite seasonal-mean observed precipitation, (Xie and Arkin
1997), in units of mm/day. Contours drawn at +1,2,4,8,12,16 mm/day. The warm and
cold composites are taken over years based on value of Nino3 index for boreal winter; the
winter definition applies to the preceding autumn and following spring. See text for details.
(a) Autumn, (b) Winter, (c¢) Spring composite differences.
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Figure 5: Warm-minus-cold composite seasonal-mean 200 hPa height in units of m. Contour
interval is 30m. The warm and cold composites are taken over years based on the value of
the Nino-3 index for boreal winter; the winter definition applies to the preceding autumn
and following spring. See text for details. (a) Autumn, (b) Winter, (c) Spring composite
differences.
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Figure 6: As in Figure 5 except for the average of three GCM ensemble means.
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Figure 7: Signal variance (a)-(c), noise variance (d)-(f) and signal-to-noise ratio (g)-(i) for three GCMs for boreal autumn.
See text for details. Contour interval is 0.5 x 103m? in (a)-(f). Dimensionless contours of 1,2,4,8,16,32 and 64 in (g)-(i).
Light (dark) shading in (g)-(i) indicates 95% (99%) significance.
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Figure 10: Two leading REOFs of the seasonal mean SST field for boreal autumn (a)-
(b); leading REOF for boreal winter (c); for boreal spring (d). Patterns are dimensional,
corresponding to the associated time series having unit variance. Contour interval is 0.25
degree C. Percentages in parantheses are explained in the text.
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Figure 13: As in Figure 12, but for the second REOF for boreal autumn.
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Figure 14: The leading optimal signal-to-noise pattern of precipitation for the COLA, NSIPP,

and NCEP GCMs for the boreal autumn. (See text for explanation.) The associated time

series have unit variance. Contour interval is 1 mm day*.
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Figure 15: Asin Figure 14, but for the second optimal signal-to-noise pattern of precipitation.
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Figure 16: The leading optimal signal-to-noise pattern of 200 hPa height for the COLA,
NSIPP, and NCEP GCMs for the boreal winter. (See text for explanation.) The associated
time series have unit variance. Contour interval is 10 m.
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Figure 17: As in Figure 16, but for boreal spring.

47



(a) COLA SON OPT—1

<= =

52
60N RS2

180 120W BOW 0

0 BOE 120E
(c) NCEP SON OPT-1

60N 1=

son]
£Q
305+

60S 1

0 BOE 120E 180 120W BOW 0

Figure 18: As in Figure 16, but for boreal autumn. Note that the contour interval is 5 m.
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Figure 19: As in Figure 16, but for the second optimal pattern during boreal autumn.
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