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Abstract
The extent to which wintertime North American surface temperature can be specifiedbased on simultaneous sea surface temperature (SST) is quantified for the period 1982-1998. The term “specification” indicates that the predictor and predictands are not lagged in time, aswould be the case for true prediction.  Four state of the art, general circulation models (GCMs)and linear empirical models with predictors derived from observations and dynamical models areconsidered.  Predictors are derived from model hindcasts using principal component analysis(PCA), canonical correlation analysis (CCA), and discriminant analysis.  The last technique hasappeared in the climate literature but its use in the present context appears new.  A distinguishingfeature of this paper is that several methods and models are compared in a common framework.The specification skill of GCMs for the period 1982-1998 is statistically significant in thenorthwestern region near Washington, British Columbia, and central Canada, with some localcorrelations exceeding 0.6.   The specification skill of GCMs is comparable to, or better than, theskill of the best empirical model, for the particular 17-year period examined.  No single specification strategy was found to improve the model hindcast skill in allcases.  Predictors derived from discriminant analysis generally lead to larger skill than predictorsbased on PCA or CCA.  The signal-to-noise ratio varies greatly among models and appears to be,if anything, inversely related to the specification skill when discriminants are used as predictors. Predictors based on 500hPa geopotential height can lead to specification skill at least as good aspredictors based on land surface temperature.  Evidence is presented for the existence of at leasttwo distinct dynamically predictable components of land surface temperature arising from twodistinct “flavors” of SST anomalies associated with El Nino and La Nina.
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1 Introduction
This paper presents an assessment of the degree to which wintertime North Americansurface temperature can be specified based on observations and state-of-the-art atmosphericgeneral circulation models.  The analogous question for statistical forecasts has been addressedcomprehensively by Barnston and Smith (1996; BS hereafter), who use canonical correlationanalysis (CCA) to predict seasonal mean surface temperature based on sea surface temperature(SST).  Although BS examine global surface temperature and precipitation over all seasons andfour lead times, the present paper focuses particularly on wintertime North American surfacetemperature predicted with simultaneous SST.  Following BS, this is called a specificationproblem rather than a prediction problem, since the SST and land surface temperature are notlagged in time.  BS show that skill degrades with lead time, hence the specification skill is anupper bound on the prediction skill.  BS find that, for these particular forecasts, the specificationskill is modest except for a large region in the west-central part of the continent in which the skillis negligible (see their fig. 3).  The largest skill was found in the southeast United States andwestern Canada, where correlation skill exceeds 0.6.  Based on the results of CCA, BS suggestthat the skill arises from ENSO variations in the SST predictor, which are associated with aroughly north-south dipole structure and an east-west dipole structure in land surfacetemperature, and an interdecadal trend of tropical SST warming.  These results are consistentwith previous studies by Barnston (1994) and Ropelewski and Halpert (1986).In contrast to the statistical prediction problem, the extent to which wintertime NorthAmerican surface temperature can be specified based on dynamical model forecasts remains anopen question.  Part of the reason for this is that dynamical models have significant biases and
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systematic errors which require some form of correction to render the associated predictionsuseful.  Unfortunately, no universal method for correcting forecasts exists.  Perhaps the mostcommon correction is to subtract the forecast climatology from each field to produce unbiasedforecasts.  Corrections based on local linear regression, such as Model Output Statistics (MOS)(Wilks 1995), are used routinely at operational forecast centers to issue local forecasts based ondynamical model output.  Rajagopalan et al. (2002) recently proposed a Bayesian methodologyfor combining the “prior” climatological distribution with an ensemble of dynamical modelforecasts to produce a single, corrected, probabilistic forecast.  This methodology, which is usedat the International Research Institute to produce tier-two predictions of global precipitation andtemperature, yields Rank Probability Skill Scores of 20% or less in the south and eastern part ofthe U.S., and negligible everywhere else in the U.S (Barnston et al. 2003).  Feddersen et al.(1999) proposed an alternative correction method based on Canonical Correlation Analysis(CCA) or Singular Value Decomposition (SVD), in which large scale fields produced by themodel essentially are replaced by other large scale fields derived from observations.  Feddersenet al. (1999) found that while the method improved the temperature and precipitation forecasts inmany parts of the world, it failed to improve the ECHAM4 forecasts for wintertime NorthAmerican temperature, ostensibly because the leading CCA and SVD patterns do not agree intime when cross validated.Anderson et al. (1999) performed a simple bias correction to two atmospheric GCMsforced by observed SSTs and found that the corresponding forecasts of 700hPa geopotentialheight produced anomaly correlations around 0.35, whereas CCA forecasts produced highercorrelations around 0.5.  To the extent that 700hPa height correlates with surface temperature,
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this result implies that empirical models give better forecasts than bias-corrected dynamicalmodels of wintertime surface temperature in North America.A shortcoming of these and other predictability studies is that each study adopts adistinctive correction technique without comparing that technique to others. Consequently, it isdifficult to gain a sense of how the different correction techniques compare with each other, andhow well statistically corrected dynamical models perform relative to empirical predictionschemes.  This paper attempts to shed light on these issues.  Rather than attempt to reproduce theexact forecast scheme in the above cited papers, the details of which may have been tailored tospecific data sets or dynamical models, we have adopted our own straightforward versions ofmany of these techniques, and introduced some new ones.  The primary data set in this study is aset of hindcasts by four state-of-the-art general circulation models.  These GCMs were run withspecified SST and hence do not constitute genuine forecasts.  The skill of these hindcasts can beinterpreted as an upper bound on the forecast skill of the same models run with specified SST.  Ingeneral, the predictability of hindcasts can be attributed to the imposed SST or initial conditions. However, since each model is initialized at least one month prior to the verification period, andsince the decorrelation time of atmospheric disturbances is at most two weeks (DelSole 2001), itis reasonable to assume that the initial condition has little affect on the predictability of thehindcasts.  Therefore, we ignore the influence of the initial condition and assume allpredictability can be attributed to the SST. Statistical prediction and statistical correction are mathematically equivalent problems. The difference lies in the choice of predictors: statistical prediction uses predictors from directobservations, whereas statistical correction uses predictors from dynamical model forecasts
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(which in turn depend on observations through initial conditions).  The main arguments fordrawing predictors from dynamical model forecasts is that the models may capture importantnonlinear dynamics which are too complex to be incorporated in statistical models, and theyallow application of Monte Carlo techniques to construct more complete probabilisticinformation.  However, drawing predictors from dynamical model forecasts and observationsrequires a method for isolating useful predictors in high dimensional fields.  How should this bedone? Recently, DelSole (2004, 2005) proposed a framework for quantifying predictabilitytheory based on information theory.  In this framework, the critical quantity is not the distributionof the forecast, as used in virtually all other predictability studies, but the conditional distributionof the verification given the forecasts.  DelSole (2005) further showed that this conditionaldistribution depends on the forecast sample only through “potential predictable components,”which are components in the forecast with non-vanishing mutual information.  If the forecast andinitial conditions (and boundary conditions) are joint normally distributed, then, in principle, thepotential predictable components can be obtained directly from CCA.  DelSole (2005) showedthat in this case there is no loss of generality in considering only the ensemble mean fields.  If thesystem is non-Gaussian, then CCA can find some of these components by virtue of their nonzerocorrelation with the boundary conditions or initial conditions.  Schneider and Griffies (1999)proposed a procedure, called predictable component analysis, which identifies components thatminimize the ratio of the forecast error variance to the climatological variance.  In a perfectmodel scenario, the forecast error variance can be identified with the “noise” of the forecastensemble, where noise is defined as the deviation of a forecast member from the ensemble mean. 
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In this case, predictable component analysis is equivalent to a statistical procedure known asdiscriminant analysis for finding components that optimally discriminate between the ensemblemean and deviations from the ensemble mean, in the sense that these components maximize thesignal to noise ratio.  To avoid confusion, we will call this technique signal-to-noise discriminantanalysis.  In this paper, we propose using discriminant analysis to identify predictablecomponents in the forecast, and then using the amplitude of these components as predictors ofland surface temperature.  In summary, this paper explores four methods for identifying usefulpredictors from high dimensional forecast fields:1) Principal component analysis of the ensemble mean model forecast field.2) CCA between ensemble mean model forecast field and verification.3) CCA between ensemble mean model forecast field and imposed SST.4) Signal-to-noise discriminant analysis of the model forecast field.
Note that the role of CCA differs in the second and third methods.  In the second, CCA extractsthe structures in the forecast that are most correlated with the verification, whereas in the thirdCCA extracts the model response to SST anomalies.  Importantly, only the second methodincludes information from the verification. Evaluating the “best” set of predictors requires comparing hundreds of forecasts andhence requires an objective method for measuring skill and for selecting models.  FollowingBarnston (1994), we adopt the correlation coefficient to measure the skill at each grid point, andthe spatially averaged correlation as a measure of global skill.  We also introduce a new measureof skill called the localized mutual information, which is a metric with attractive properties
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suggested from information theory.  Both measures give essentially the same conclusions.  Inregards to model selection, we simply choose the model that maximizes the cross-validationskill.  It should be noted that this selection criteria is biased– that is, the selected model usuallyachieves less skill in independent data than in the cross-validated data (DelSole and Shukla2002). A description of the empirical model, skill metrics, data, and dynamical models used inthis study are given in the next two sections.  This is followed by a discussion of the skill ofdynamical model forecasts.  Section 5 discusses three methods for extracting predictors fromobservations and model forecasts, namely principal component analysis, canonical correlationanalysis, and signal-to-noise discriminant analysis.  Section 6 discusses the results of “classical”CCA forecasts, in which EOFs of land surface temperature are the predictand and EOFs of modelfields are the predictors.  Section 7 discusses the results of specifying local land surfacetemperature based on the different predictors discussed above.  The paper ends with a summaryof the major conclusions.2 Dynamical Models and Data2.1 General Comments About the Forecast Data
The dynamical model forecasts used in this study are ensemble hindcasts by four state-of-the-art, general circulation models (GCMs) which were compiled as part of the DynamicalSeasonal Prediction (DSP) experiment (see special issue of Quarterly Journal of the RoyalMeteorological Society, July 2000).  The GCMs are from the Center for Ocean-Land-Atmosphere Studies (COLA), the National Aeronautics and Space Administration (NASA), andthe National Centers for Environmental Prediction (NCEP).
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The geographic domain of all analyses was restricted to North America between 20°N -60°N, and 140W-60W.  The northern latitudinal limit was chosen to avoid sea-ice complexities. All fields were averaged in time over January-February-March (JFM).  This averaging was donebecause analysis of individual months revealed little or no predictability.  The mean at each gridpoint over all years was subtracted from all fields. 2.2 COLA V1.11
  The V1.11 COLA AGCM is a global primitive equation model with 18 sigma levels andR40 spectral truncation.  The dynamical core and physical parameterizations are modifiedversions of the operational medium range forecast model at NCEP.  The parameterization of deepconvection is the relaxed Arawaka-Schubert (RAS) scheme of Moorthi and Suarez (1992).  Theland-surface model is the simplified Simple Biosphere model (SSiB) of Xue et al. (1991).  Forfurther details, consult Shukla et al. (2000).  2.3 NASA
The NASA Seasonal to Interannual Prediction Project AGCM (NSIPP-1) is a globalprimitive equation model with 34 sigma levels and 2° x 2.5° horizontal resolution.  Thedynamical core is the fourth-order grid point model of Suarez and Takacs (1995).  Deepconvection is parameterized by the RAS scheme of Moorthi and Suarez (1992).  The land surfacemodel is the MOSAIC LSM of Koster and Suarez (1992).  For further details, consult Bacmeisterand Suarez (2002).2.4 NCEP
The NCEP Seasonal Forecast Model (SFM) is a global primitive equation model with 28
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sigma levels and T63 spectral truncation.  Deep convection is parameterized by  the RAS schemeof Moorthi and Suarez (1992).  The land surface model is the two-layer LSM of Pan and Mahrt(1987).  For further details, consult Kanamitsu et al. (2002).  2.5 COLA v2.2 and COLAv2.2-50
The V2.2 COLA AGCM is a global primitive equation model with 18 sigma levels andT63 spectral truncation.  The dynamical core is that of the National Center for AtmosphericResearch (NCAR) Community Climate Model version 3 (CCM3) described in Kiehl et al.(1998).  The prognostic variables are treated spectrally, except for water vapor which is advectedusing the semi-Lagrangian technique.  The parameterization of deep convection is the RASscheme of Moorthi and Suarez (1992).  The land surface model is the simplified SimpleBiosphere model (SSiB) of Xue et al., with the revised soil and vegetation parameters ofDirmeyer and Zeng (1999).  COLAv2.2 denotes hindcast data for the period 1982-1998, andCOLAv2.2-50 denotes hindcast data for 1950-1999.  2.6 Initial conditions
  The atmospheric state of each GCM was initialized in November based on theNCEP/NCAR Reanalysis for the years 1982–1998 (except for the COLAv2.2-50 runs, whichcovered the years 1950-1999).   However, the starting date and ensemble size differs from modelto model.  COLA V1.11 and COLA V2.2 were initialized at 0000 UTC for the last five days inNovember (Nov. 26, 27, 28, 29, 30).  Five additional initial conditions were constructed byadding to each initial condition the difference between the analyses at 12 hours before and afterthe date in question.  This procedure results in a total of 10 initial conditions with which toproduce a 10-member ensemble for each COLA model.   NSIPP-1 was initialized at 0000 UTC
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November 13-17, and at 1200 UTC 13-16 November, giving a total of 9 initial conditions withwhich to produce a 9-member ensemble.  The NCEP SFM was initialized at 0000 UTC and 1200UTC November 1-5, giving a total of 10 initial conditions with which to produce a 10-memberensemble.  The extent to which differences in initial conditions influenced the skill of thespecifications is difficult to ascertain based solely on this data set.  However, the results of secs.4, 6, and 7 reveal no systematic pattern between the skill of the specifications and the lead time,suggesting that differences in the initial conditions were not a significant factor in explaining thedifferences in the specifications.  The land surface initial condition for COLA V1.11, COLA V2.2, and NCEP SFM wereobtained from a climatology compatible with the respective land surface models.  The landsurface initial condition for the NCIPP-1 model was obtained from a single, arbitrary Decemberstate from a previous experiment based on the NCIPP-1 model.  2.7 SSTThe SST in the COLA V1.11, NCEP, and NSIPP-1 models were imposed at each timestep based on a time-interpolated version of the optimal interpolation SST (OISST) data ofReynolds (see Reynolds and Smith 1994).  The SST in the COLA V2.2 model was taken fromthe HadISST data of Rayner et al. 2003.2.8 TCAS and Z500
The primary predictors in this study are land surface temperature (TCAS), 500hPageopotential height (Z500), and SST.  The land surface temperature is identified as the “canopytemperature” in the COLA and NASA models, and “ground temperature” in the NCEP model.  2.9 Observational Data
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(1)

The SST data set used in all CCA calculations is the HadISST data set of Rayner et al.(2003), which is a monthly mean sea surface temperature field of on a 1° × 1° global grid.  Weconsider SSTs only between 40°S and 40°N.  The data set used for verifying the land surfacetemperature is the monthly surface temperature anomalies of Jones and Moberg (2003) on a 5! x5! global grid.  Grid boxes for which the land surface temperature data were missing for all threeconsecutive months during the time period under analysis were discarded.  The verification gridis indicated in fig. 1, for instance, by the shaded grid cells.  3 Empirical Models and Skill Metrics
This section reviews the empirical models and skill metrics used in this study.   3.1 The Empirical Linear Prediction Model
The variable we want to specify, y(t), is called the predictand, and the variables on which

1 2 K-1the specification is based, x , x , . . . , x , are called the predictors.  The specification equation isassumed to be of the linear form

1 Kwhere the K regression parameters a , . . . , a  are to be determined from data, and ! represents
1 Krandom error.  Here t is discrete with N distinct values.  The parameters a , . . . , a  that minimizethe mean squared errors !  are obtained by the method of least squares.23.2 Skill Metrics

The primary measure of skill at a grid point used in this study is the correlation betweenforecast and observations.  This metric is not affected by linear transformations of the forecast
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which are often employed to correct for systematic biases or height differences between modeltopography and observations.  The 5% significance level of the correlation coefficient for 17independent, normally distributed years is about 0.39.In addition to the above local measure, a global measure of predictability and skill isneeded.  Mean square error is additive and hence can be aggregated to produce a single overallmeasure of skill.  Thus, we define

where f denotes the forecast minus its 1982-1998 climatology, v denotes the verification minusits 1982-1998 climatology, square brackets denote a space average, and overbar denotes a timeaverage.  It is often more intuitive to normalize the mean square error such that it is unity for aperfect forecast (f = v) and vanishes for a climatological forecast (f = 0).  We call this normalizeMSE the “explained variance,” EV, which is simply 

The sampling distribution of EV depends on the spectrum of forecast variances among the gridpoints, so, in general, no a priori significance level can be stated for EV.  Unfortunately, neither MSE nor EV is invariant with respect to linear transformation ofthe data.  This problem is acute over mountainous regions, where the model surface height is notnecessarily accurate, and in regions with large biases.  Both errors can be corrected to a largeextent by linear regression methods.  Barnston and Smith (1996) have used the spatially averaged

(2)

(3)
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correlation coefficient,

as a global measure of forecast skill.  This quantity is invariant with respect to lineartransformations of the data.  The sampling distribution of RHOM was derived by selecting pairsof uncorrelated Gaussian variables 17 times, corresponding to 17 years, averaging over 48independent grid points, and computing the resulting correlation coefficient for 1000 trials.  Thesimulated values were found to be less than 0.07 in 990 cases, so the value 0.07 has been adoptedas the 1% significance level for RHOM. The spatially averaged correlation does not seem to have a natural interpretation in thecontext of predictability.  Recently, DelSole (2004, 2005) proposed a framework for quantifyingpredictability based on information theory in which a lower bound estimate of the true (butunmeasurable) predictability is given by the mutual information between f and v.  This quantitycan be interpreted as a measure of the dependence between two variables, and, equivalently, asthe reduction of uncertainty in v when f becomes known.  If the two variables f and v are bivariatenormal, then the mutual information is

where " is the correlation coefficient between the two variables.  In the multivariate case, mutualinformation is given by

(4)

(5)

(6)
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1 2 Mwhere " , " , . . ., "  are canonical correlations between f and v (DelSole 2004).  In practice,c c c
this quantity is undefined when the dimension of the system exceeds the number of independentsamples.  To overcome this problem, we propose a new metric, called localized mutualinformation (LMI), which is the spatially averaged mutual information at each local region,modified to penalize against negative correlations:  

1 2 Mwhere " , " , . . ., "  are the local correlations between f and v at each grid point, # is the area ateach grid point (assumed constant), and A is the total area.  LMI is proportional to MI in the casein which each field f and v have no autocorrelations in space.   Although LMI can be dominatedby a single large correlation, this situation did not occur in the present study.  Note that for small,positive correlations,

Since the squared correlation coefficient equals the fraction of explained variance in linearregression theory (DelSole and Chang 2003), (8) implies that, for small positive correlations,LMI is the spatial average of the fractional explained variance.  The sampling distribution of LMI can be obtained analytically from the knowndistribution of the sample correlation coefficient.  However, it is much easier to compute thesampling distribution by Monte Carlo methods as discussed above.   For a set of independent 17years and 48 grid points, the estimated 1% significance level for LMI was found to be 0.03.3.3 Anomaly Pattern Correlation

(7)

(8)
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To connect with previous studies, we also measure the hindcast skill of individual yearsusing the pattern correlation coefficient.  For reasons that are discussed in the appendix, weconsider only the “uncentered” correlation coefficient, defined as

3.4 Cross-Validation
Using the same data to train and select an empirical model leads to artificial skill, bywhich we mean that the value of skill is inflated relative to the skill the model would have if itwere used to predict independent data.  To avoid artificial skill to some extent, we adopt a cross-validation procedure (see Michaelsen (1987) and Barnston and Ropelewski (1992)).  In thisprocedure, each year of an N-year data set is set aside in turn and a regression model is trainedbased on the remaining N–1 year data set.  All aspects of the training– including the computationof the mean, EOFs, predictors (e.g., canonical variates), and regression coefficients– are based onthe N - 1 years independent of the specification year.  For each year held out, the empiricalforecast model is used to “predict” the predictand based on the predictors in the withheld year. Repeating this procedure for each year yields a pair of specification-verification fields that can beused to measure the skill of the forecast scheme.  3.5 Model Selection
In this paper, we computed the average cross validated skill of regression models forevery combination of (1) the type of predictors, (2) the number of predictors, and (3) the numberof principal components used to construct predictors.  Then, we chose the specific combination

(9)
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that minimized the mean square, cross validated forecast error.  These computations reveal thatthe cross validated error depends sensitively on these parameters, implying that some objectiveselection criterion is absolutely essential for this type of study.  It should be recognized that thelevel of skill found by this selection criterion is not likely to be maintained in independent data,because this criterion is itself subject to artificial skill (DelSole and Shukla 2002).  In an effort toovercome this problem, we explored a variety of selection criteria, including Akaike’sInformation Criteria (AIC) (Burnham and Anderson 2002), statistical significance of thepredictors (as determined by methods described in section 5), sensitivity of the predictor patternsto leave-one-out cross validation, etc.  We found AIC to work very well in the local specificationexperiments described in sec. 7, in the sense that it often chose a model whose MSE differs fromthe optimal MSE by less than 5%.  But AIC did not perform well in the large-scale specificationexperiments described in sec. 6.  Despite its problems, the criterion of choosing the model withthe minimum mean square, cross validated error has the virtue that it is easy to apply tounivariate and multivariate regression models, and avoids uncertainties arising from untested orunreliable selection criteria.4 Skill of the Dynamical Models
The skill of TCAS hindcasts by the dynamical models interpolated onto the observationgrid is summarized in fig. 1 and table 2.  All models show statistically significant skill in thenorthwest U.S. over Washington and California, with some locations having a correlationexceeding 0.6.  The models also suggest skill in central and east Canada.  The value of EV fortwo models is negative, indicating that the uncorrected hindcasts are systematically worse than aprediction based on climatology.  In contrast, the mutual information of the hindcasts all lie in
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the range 0.11-0.20, which are well outside the 99% probability interval found earlier bysimulation methods as discussed in sec. 3, and hence are unlikely to have arisen by chance.    The anomaly pattern correlation between observed and hindcast TCAS during 1982-1998is shown in fig. 2.  The El Nino years 1983, 1992, and 1998, and during the La Nina year 1989,were the most skillful hindcasts for all models, consistent with previous studies (QJRMS specialissue, July 2000).  The 1987 anomaly was predicted well by three models even though the SSTindicated only a weak El Nino.  The anomalies in 1984, 1990, and 1991 were poorly predicted byall models. The signal to noise ratio of JFM land surface temperature for each dynamical model is
kk!f"shown in fig. 3 (in the notation of sec. 5, the signal to noise ratio at the k’th grid point is (S )  /

kkn(S )  ).  The maximum signal to noise ratios in all models tend to lie on a northwest-southeastpatch in central Canada.  All models suggest low signal to noise ratios in the west-central U.S,precisely where BS found no skill for their statistical specification.  Regions of large signal-to-noise ratios are not necessarily associated with large specification skill (compare figs. 1 and 3). The COLAV1.11 signal to noise ratios are much larger than those of other models.  The largeratios randomly distributed along coasts are probably an artifact of the SST specification.  Thenoise variance of all four models (not shown) are fairly consistent with each other, so the abovedifferences in signal to noise ratios can be attributed primarily to differences in signals.5 Predictors
We test three methods for finding predictors, namely principal component analysis,canonical correlation analysis, and signal-to-noise discriminant analysis.  These methods arereviewed below.  Our notation is as follows.  The M-member anomaly forecast data set at a fixed
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1 2 Mlead time is f (t), f (t), . . ., f (t), where the subscript refers to the ensemble member and t refersto the year.  The ensemble mean is denoted by !" and defined as

The sample covariance matrix of the ensemble mean forecast is defined as

where the bar (#) denotes a time average over all years, and superscript T indicates a matrixtranspose.  The spread of the forecast ensemble about the ensemble mean is measured by thenoise covariance matrix, defined as

The anomaly verification data is denoted v(t) and its covariance matrix is

Finally, the cross-covariance matrix between v and !f" is denoted

5.1 Principal Component Analysis (PCA)
Principal component analysis (PCA) decomposes a multivariate time series into anordered set of orthogonal, uncorrelated components such that the first K components capture the

(10)

(11)

(12)

(13)

(14)
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maximum possible variance out of all possible sets of K vectors. The spatial patterns associatedwith principal components, called empirical orthogonal functions (EOFs), are the eigenvectors ofthe sample covariance matrix.  Thus, the EOFs of the ensemble mean forecast are the
!f" veigenvectors of S , and the EOFs of the verification are the eigenvectors of S .  Projecting the(normalized) EOFs on the original data set yields time series called the principal components(PCs), which can be interpreted as the amplitude of each EOF.  PCA is discussed in von Storchand Zwiers 1999, for example, to which we refer the reader for further details.  Principal component analysis was performed on the JFM averaged anomaly fields.  Foreach year being specified, the EOFs were computed from data strictly from the remaining years;that is, the EOFs were recomputed during cross-validation.The leading EOFs and PCs of the ensemble mean TCAS of all four models are shown infig. 4.  It is immediately apparent that the NCEP EOF is unlike the other EOFs, in the sense thatits maximum loadings occur over the Great Lakes whereas those of the other EOFs occur well tothe northwest of the Great Lakes.  Furthermore, the PCs of the other three models have relativelylarge amplitudes during the major ENSO years 1983, 1989, and 1998.  In contrast, the leading PCof the NCEP model has the same sign for 1989 and 1998, even though the NINO3 values forthose two years are of opposite sign.  5.2 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is a procedure for finding a linear combination ofvariables in one data set, and a second linear combination of variables in a second data set, suchthat the correlation between the resulting combinations is maximized.  If the two data sets inquestion are the verification and ensemble mean forecast, then the first step in CCA is to solve
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the following eigenvalue problems

where the eigenvectors x and y contain the weighting coefficients for the desired linearcombination.  The time series produced by a linear combination is called a canonical variate.  For
x yeach canonical variate, there corresponds a canonical pattern.  The canonical patterns p  and passociated with the eigenvectors x and y, respectively, are 

The (suitably normalized) canonical variates can be interpreted as the amplitude of the canonicalpattern at each point in time.  Importantly, CCA is invariant with respect to nonsingular linear transformations.  Owingto this invariance, it can be shown that CCA is equivalent to an SVD of a “pre-whitened” cross-covariance matrix.  By “pre-whitened,” we mean that the data have been transformed such thattheir covariance matrix equals the identity matrix.  An example of such a transformation, whichis commonly done in CCA, is to project the data onto the leading EOFs and then to normalize thePCs to unit variance.  The particular application by Feddersen et al. (1999) is not equivalent tothis because they normalize each grid point, rather than each PC.  Regression forecasts can becomputed conveniently from the canonical patterns and variates.  For details of this and otheraspects of CCA, we refer the reader to Barnett and Preisendorfer (1987) and DelSole and Chang(2003).  

(15)

(16)



20

In this work, CCA is performed only on the principal components of fields.  Whenever ahindcast field is analyzed in CCA, only the ensemble mean is used.  There is no loss of generalityin using ensemble means if we consider only linear prediction methods (see DelSole 2005). Also, the number of PCs for the two variables is the same, so that the cross-covariance matrix(14) between the two variables is always square.The leading TCAS pattern from CCA between TCAS and SST for each model is shownin fig. 5.  The figure suggests that the linear response of each model to SST is characterized by alarge-scale pattern oriented northwest-southeast over Canada, plus a smaller scale pattern ofopposite sign to the south.  The canonical pattern from the COLAv1.11 model has very poorcross validation properties and should not be given too much weight (the cross-validatedcanonical variates have nearly vanishing correlation).  The leading canonical variate for theNCEP model has relatively weak amplitude during 1983, a strong El Nino, and relatively largeamplitude during 1997, a weak El Nino.  The other canonical variates have significant amplitudeduring the El Ninos of 1983 and 1998.5.3 Signal-to-Noise Discriminant Analysis (S2NDA)
Signal-to-noise discriminant analysis (S2NDA) identifies the linear combination offorecast variables that best discriminates between fluctuations in the ensemble mean, called thesignal, and fluctuations about the ensemble mean, called the noise.  The optimal weightingcoefficients z are the eigenvectors of the generalized eigenvalue problem

The time series produced by different eigenvectors are mutually uncorrelated and ordered by
(17)
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decreasing discriminantory power, as measured by the ratio of signal variance to noise variance.To each eigenvector z, there corresponds a discriminant pattern d given by

The (suitably normalized) disciminant time series gives the amplitude of the discriminant patternat each point in time.  This procedure is discussed in Venzke et al. (1999), to which the reader isreferred for further details.  Note that S2NDA does not involve observational data.Theoretically, if the model is perfect, such that the noise variance equals the forecasterror variance, then S2NDA is equivalent to predictable component analysis discussed bySchneider and Griffies (1999).  If the variables are further assumed to be joint normallydistributed, then S2NDA yields the same discriminant patterns as CCA between the ensemblemean forecast and observation (DelSole and Chang 2003; DelSole 2004, 2005).  In this work,S2NDA is computed from the leading PCs of the “total” forecast members (no ensembleaveraging), then the signal and noise components are computed directly from these PCs.  The leading discriminants of TCAS for each model are shown in fig. 6.  The structuresseen in fig. 6 are similar to those seen in fig. 5 and to some of those seen in fig. 4.  All of thediscriminant patterns have small loadings in the southwest and southeast U.S.  Mostdiscriminants have strongest amplitudes during strong ENSO years. Interestingly, the signal tonoise ratios differ widely among the models, by as much a factor of 3.  The figures alsogive the mutual information if the “noise” is identified with “error,” and the climatologyis identified as the “signal plus noise,” given by

(18)
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6 Specification of Large Scale Temperature    
In this section, we consider specification models in which both predictors and predictandsare derived from CCA.  More specifically, CCA is applied to the observed land surfacetemperature and a model hindcast variable to construct canonical variates, then, the amplitude ofthe model hindcast canonical variate is used as a predictor for the amplitude of the canonicalpattern associated with the observed TCAS data.  Because the predictands are derived fromleading EOFs, which tend to be large scale, this procedure is essentially a specification of thelarge-scale temperature field.  This will be called “classical CCA,” since it is a standard methoddiscussed in Barnett and Preisendorfer (1987) and DelSole and Chang (2003).  Table 3summarizes the results for CCA forecasts that minimize the cross validated, mean square error. Comparison between tables 2 and 3 show that (small sample) CCA does not consistently improvethe skill of the original forecasts.  However, in most cases the majority of the predictability iscaptured with 1-2 predictors and predictands.  This suggest that the predictability of TCAS in themodels depends on a few coherent patterns.  The table shows that predictors based on modelTCAS recover about as much skill as predictors based on model Z500.  This result is consistentwith the theory that the imposed SST drives a large-scale response in Z500 which in turn iscorrelated with the response in TCAS (which in turn is detected by CCA).The local specification skill of the classical CCA forecasts, in which ensemble meanTCAS is a predictor, is shown in fig. 7.  Relative to the skill of the raw model forecasts, the CCAforecast improves the local skill in many local regions, with a major exception being the

(19)
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COLAv1.11 model.  The failure of the latter model to produce good predictors appears to berelated to the fact that the COLAv1.11 model has a very large signal that is not well correlatedwith observations, as mentioned in sec. 4.  The negative correlations in the southwest U.S. aredue to the fact that the forecast for those regions is close to climatology, which gives strongnegative correlations under cross validation (Barnston and van den Dool 1993).  The differencebetween the (uncentered) pattern correlations for the CCA forecast and the raw model hindcastsare shown in fig. 8.  The figure shows that the classical CCA forecast improves the raw modelhindcasts more often than it degrades, although in certain isolated years classical CCA leads to asubstantial degradation of specification skill.  The last row of table 3 shows the skill of a classical CCA forecast of TCAS based onSST, in which the statistical model was trained using data during the period 1950-1999, butverified over the period 1982-1998.  Comparison of the results in tables 2 and 3 reveal that theskill of the purely statistical forecast is comparable to that of the raw model hindcasts, andcomparable to the skill of classical CCA corrected forecasts.  This result shows that the currentstate-of-the-art dynamical models provide hindcasts of wintertime land surface temperature thatare at least as skillful as statistical models.  For reference, the local skill and yearly patterncorrelations of this model are given in fig. 9.Note that the best statistical model was a “one EOF” CCA forecast.  This model isformally equivalent to predicting the amplitude of the leading EOF of observed TCAS, basedsolely on the leading PC of SST.  In contrast, Barnston and Smith (1996; BS hereafter) reportedthat the best CCA forecast model was based on approximately 10 EOFs.  This difference can beattributed to the difference in verification periods between our study and that in BS.  In
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particular, when our CCA forecast is verified over the longer period 1950-1999, the cross-validated mean square error was minimized when 11 out of 13 canonical variates were used,more or less consistent with the finding of BS.  Moreover, the structure of the skill map for theseforecasts was reasonably consistent with the results of BS, and the magnitudes were comparableto that of BS, including in the southeast region where BS found correlations exceeding 0.6.  Thespatially averaged correlation was 0.45, which is slightly larger than BS’s value of 0.38.  Itshould be recognized that there are numerous differences between BS and this study, includingthat BS considered a slightly different region of North America (in particular, their domainextended to 80°N, which includes a substantial area of statistically significant skill which is notincluded in our analysis), used a different SST data set, namely that of Smith et al. (1996), used adifferent surface temperature data set, namely CAMS (Ropelewski et al. 1985), controlled foroutliers, filled observation gaps by horizontal interpolation, and considered a different period,namely 1950-1992.  The degree of similarity between our results and BS’s results, despite thedifferences in analysis, suggests that our statistical forecast model has captured essentially thesame predictability as reported in BS.  Figure 10 illustrates the skill of virtually all forecast models considered in this paper(some of which will be introduced in the next section).  As can be seen, classical CCA forecastsbased on NCEP model variables can give superior hindcasts overall.  The spatial distribution oflocal correlation skill (fig. 7) reveals significant skill over a large area, with correlationsexceeding 0.7 in many places.  Although these specifications are based on the first two canonicalvariates, a forecast based on just the leading canonical variate explains negative 11% in the caseof TCAS, and negative 23% in the case of Z500, strongly suggesting that all of the skill comes
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from the second canonical variate of each variable.  The second canonical pattern pair andassociated time series for TCAS are shown in fig. 11.  We see that the observed temperaturepattern is dominated by a dipole oriented primarily north-south, whereas the modeled pattern hasa dipole oriented northwest-southeast.  The lack of significant peaks at 1983, 1989, and 1998 inthe variates suggests that this structure responds to a different “flavor” of ENSO than thosemeasured by the NINO1, NINO2, or NINO3 indices, a point to which we will return. The distinctiveness of the NCEP model, as compared to the other three models, becomeseven more apparent when one compares the correlation of the model PCs with the SST PCs.  Inparticular, the correlation between the leading PC of SST, and the leading PCs of TCAS in theNASA, NCEP, COLAv1.11, COLAv2.2 models, are 0.85, 0.20, 0.70, 0.71, respectively.  Theseresults show that the NCEP model responds relatively weakly to the leading EOF of SST,compared to the other models.  In contrast, the cross-validated correlation between the second PCof SST, and the above models, are 0.2, 0.5, 0.1, 0.1.  To obtain the spatial structure of the SSTwhich gives rise to the NCEP-TCAS pattern shown in fig. 11, we computed the covariancebetween the associated time series (bottom panel of fig. 11) and local SST.  The result is shownin fig. 12.  We see that the strongest SST anomalies are found almost entirely in the NINO3.4region.  This structure turns out to be nearly the same as the second leading canonical patternbetween NCEP TCAS and SST.  It turns out that the first canonical pattern between NCEPTCAS and SST has dominant loadings in the NINO1, NINO2, NINO3 regions.  However,forecasts based on this leading pattern lead to very poor forecasts (i.e., skill worse thanclimatology).  These results suggest that the NCEP model does have some response to SSTanomalies in NINO1-3 regions, but that this response is not representative of that which occurs in
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the true system.  Rather, most of the skill in the NCEP model appears to arise from SSTanomalies in the NINO3.4 region.  Barsugli and Sardeshmukh (2002) computed the sensitivity of seasonal anomalies overNorth America to localized SST anomalies in a particular version of the NCEP model, and foundthat the SST region of maximum sensitivity was mostly in the NINO4 region, which overlapswith the NINO3.4 region.  It is noteworthy that we reached a similar conclusion with a similarmodel strictly from the results of the hindcast experiments.  The present study adds to thisconclusion by showing that it is model dependent, since significant responses to SST anomaliesin the NINO3.4 region could not be detected in the other models.   Moreover, our study not onlyconfirms this sensitivity, but shows that this sensitivity is representative of the true system (asevidenced by the fact that a specification model based on the associated components in the NCEPmodel give nearly the highest skill of any model, as illustrated in fig. 10).7 Specification of Small-Scale Temperature
In the previous section we examined hindcasts of large scale patterns defined by EOFs orlinear combinations of EOFs.  In this and the remaining sections, we consider the specification oflocal regions.  More precisely, we consider specification of individual grid points of the surfacetemperature data set.  Note that CCA is used in different ways in the different types of forecasts. In the “classical” CCA prediction, which was used in the previous section and has been discussedby Barnett and Preisendorfer (1987) and DelSole and Chang (2003), the forecaster first appliesCCA to two data sets, one of which must be the field to be predicted.  In such cases, theamplitude of one canonical variable is used to forecast the amplitude of the other.  In contrast, thelocal prediction introduced here also applies CCA to two data sets, but neither of the data sets
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have to be the variable to be predicted.  Rather, CCA produces time series, called canonicalvariates, which gives the amplitude of the corresponding canonical pattern at each point in time. These canonical variates are used as predictors in a linear regression prediction, as discussed insec. 2.1.  Thus, the predictors correspond to large-scale canonical patterns as before, but thepredictands are local surface temperature quantities.  A list of all predictors derivable from CCA, signal-to-noise discriminants, and EOFs isgiven in table 4.  The specification skill of local surface temperature using these predictors aregiven in tables 5-8 and illustrated in fig. 10.  The following conclusions can be ascertained fromthese results:1 When SST is a predictor, the best forecast (in a cross-validated mean square sense) isobtained using only the first PC of SST, and little advantage is gained by specifyingsmall-scale TCAS over large scale TCAS (last rows of tables 3 and 5).2 Specification skill of predictors based on the leading PC of ensemble mean hindcasts isusually less than that of the raw model hindcasts (c.f. tables 2 and 5). 3 When CCA is applied to observed TCAS and an ensemble mean model forecast, theresulting canonical variates lead to local predictions that are nearly indistinguishable fromclassical CCA forecasts (compare tables 3 and 6).4 When CCA is applied to ensemble mean hindcast and SST, one of the two variatesusually leads to greater skill than that of the raw model hindcasts (c.f. tables 2 and 7), butit is not clear which should be used a priori.  5 When the canonical variate involving SST is used as a predictor, the skill is at least asgood as simply using the leading PC of SST (c.f. fig. 10).  
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6 Predictors based on Z500 can lead to specification skill at least as good as, if not betterthan, predictors based on TCAS (c.f. fig 10). 7 Predictors based on signal-to-noise discriminants lead to greater specification skill thanthat of the raw hindcasts in about half the cases (c.f. fig. 10).  In contrast, classical CCAforecasts and predictors based on PCs of ensemble mean model forecast lead to improvedspecification skill in about a quarter of the cases.8 In most cases, the optimal number of predictors is one, but the optimal number ofprincipal components used to extract predictors varies considerably from 1-10. Presumably, these conclusions depend on the length of the data set. 9 Discriminants from the NCEP model consistently had moderate signal-to-noise ratios (~3) but the largest specification skill (RHOM ~ 0.3).  Discriminants from the COLAv1.11model consistently had the largest signal-to-noise ratios (>4) but the smallestspecification skill (RHOM < 0.25).  In several cases two models have virtually the sameskill in specifying land surface temperature, but very different signal to noise ratio (over afactor of two difference).  These results demonstrate that the signal to noise ratio, andhence the degree of potential predictability in the model, is not necessarily related to theskill with which the discriminants can be used to specify land surface temperature.  10 Surprisingly, the use of longer training sets (from 17 years to 50 years) rarely improvedthe specification skill of the regression model for the verification period 1982-1998(compare COLAv2.2 to COLAv2.2-50 and HADSST to HADSST-50 in tables 3-8). Only predictors based on discriminant analysis consistently led to improved skill forlonger data sets.  The single most skillful specification model of this study used
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predictors derived from the TCAS discriminants of COLAv2.2-50, with a spatialaveraged correlation coefficient of 0.44 for the period 1982-1998.11 Even if a model has a strong response to SST, as indicated by strong canonicalcorrelations between model variable and SST, the skill based on the canonical variatesmay be worse than climatology.  12 No useful specification model could be derived from COLAv1.11's TCAS.  The fact that the TCAS variable from COLAv1.11 model consistently gives poorspecification skill deserves comment.  These poor forecasts are especially surprising given thatthe leading PCs of the COLAv1.11 are similar to the leading PCs of other models.  For instance,the correlation coefficient between the leading PC of the COLAv1.11 model and COLAv2.2model is 0.7, yet the cross validated specification skill based on these predictors is -0.10 and0.21, respectively.  Such a large difference in specification skill for two highly correlatedpredictors suggest a coding error, but this possibility has been checked extensively and nothinghas been found to suggest an error.  Moreover, the result is not mathematically impossible in thesense that at each grid point the correlations are consistent with the requirement of positivedefiniteness of correlation matrices.  The problem appears to be that the COLAv1.11 model has astrong signal in TCAS that is not well correlated to the observed TCAS variability. 8 Summary and Discussion 
The major results of this paper, which of course are confined to the methods and dataused in this paper, are as follows:1. This paper quantified the specification skill of wintertime North American surfacetemperature by four state-of-the-art, general circulation models, integrated with observed
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SST.  The spatially averaged point-by-point correlation skill was 0.22 - 0.32, dependingon the model, although the local skill exceeded 0.6 in some regions (over Washington,British Columbia, and North Dakota, depending on the model).  The models were mostskillful during strong ENSO years.  2. The best empirical model (as measured by RHOM, EV, or LMI) of wintertime NorthAmerican surface temperature for the period 1982-1998 was a “classical” CCA forecastusing one PC of SST as a predictor, and trained on the 1950-1999 data.  This forecast,which had a spatially averaged correlation skill of 0.27, is equivalent to predicting theamplitude of the leading EOF of observed TCAS, using the leading PC of SST as apredictor.  The leading PC of SST is a common measure of ENSO variability, thusspecifications based on this predictor indicates the degree of predictability due to ENSO.  3. It follows from the above results that the specification skill of state-of-the-art generalcirculation models is comparable to, or sometimes better than, the skill of the bestempirical models, for the particular 17-year period examined. 4. The effectiveness of different specification strategies was found to be model dependent.  No single strategy improved the model forecast skill in all cases.  It should be recognizedthat differences between different strategies could very well arise from sampling error.  Anotable feature of this paper is that these strategies were evaluated within a commonframework with common data sets, allowing direct comparison between differentspecification strategies.  5. Predictors based on 500hPa geopotential height can lead to specification skill at least asgood as, if not better than, predictors based on TCAS. 
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6. The optimal number of predictors of local land surface temperature is often one, andrarely exceeds four.  Moreover, the specification skill of these predictors is comparable tothat of the raw model hindcasts.  This result suggests that much of the predictability in thedynamical models can be captured by just a few predictable components.  7. The single best forecast of land surface temperature, derived strictly from the 1982-1998data, was a “classical” CCA forecast using the ensemble mean NCEP TCAS as apredictor.  Interestingly, the skill of this forecast does not appear to arise from the sameENSO influences as the other models, since the canonical variate that dominated the skillhad relatively small amplitudes during the years 1983, 1989, and 1998.8. This paper proposed the use of signal-to-noise discriminants as predictors of land surfacetemperature.  In many cases specifications based on discriminants led to greater skill thanspecifications based on principal components or canonical variates.  In fact, the singlebest forecast for the period 1982-1998 was obtained from discriminant analysis of the 50-year COLAv2.2 integrations, whose spatially averaged correlation skill for the period1982-1998 was 0.44.  9. The signal to noise ratio varied widely among the models, by a factor of 3 in some cases,and, if anything, an inverse relation was found between signal to noise ratio and thespecification skill of predictors derived from discriminant analysis.  None of the statistical correction methods investigated in this paper guarantees animprovement in skill in every case in every model.  It is not unreasonable to suppose that theeffectiveness of statistical correction methods depends on the model and require case by caseexperiments.  It is perhaps worth noting that a comparison based on mean square error would
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make the dynamical models look worse owing to their excessive variances.  As noted in the paper, the model selection criterion was applied only to the average skillrather than to the skill at each grid point independently.  Although applying the selection criterionat each grid point undoubtedly would improve the forecast skill, such an endeavor would haveincreased the data management requirements of this project, which already were considerable(more than 1,000,000 forecasts were constructed for this paper).  Note that while the number ofpredictors was constrained to be the same at each point, individual regression coefficients varyfrom point to point.  Hence, the selected forecast at different grid points can respond in differentways to the same SST forcing. The above results appear to contradict certain previous studies and thus deserve furthercomment.  Feddersen et al. (1999), Kang et al. (2004), and others have applied statisticalcorrections to model hindcasts similar to those considered here and seem to report more successthan found here.  However, of these studies, only Feddersen et al. (1999) applied statisticalcorrection to wintertime land surface temperature hindcasts, and in that case they found that thecorrections did not lead to improvement.  The enhancement in skill reported in the above papersappears to be concentrated primarily in the tropics, where the signal to noise ratio is much largerthan in midlatitudes.  It would be interesting to perform a study similar to ours for the tropics. Anderson et al. (1999) found that classical CCA forecasts had larger anomaly patterncorrelations than bias corrected dynamical model hindcasts, leading them to conclude thatstatistical models “produce considerably better simulations” than dynamical models.  In contrast,we find the opposite: the skill of dynamical models is comparable to, or better than, empiricalmodels.  There are numerous differences between the two studies which could explain this
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discrepancy, including the use of different, more recent dynamical models, different forecastvariables (TCAS vs. 700hPa height), and different data sets for applying CCA.  Anotherpossibility, however, is that Anderson et al.’s conclusion may be based on a questionablemeasure of skill.  In particular, Anderson et al. (1999) measure skill by the spatial anomalycorrelation over a “PNA region” within 20°N-80°N and 180°-60°W, of which 63% is covered byocean.  The dynamical models in that study were all integrated with observed SST as a lowerboundary condition.  It seems plausible to us that the 700hPa height over the oceans aredetermined primarily by the SST directly underneath in both the models and observations. However, the models presumably contain systematic errors, whereas CCA could probably lift thecorrect SST-700hPa height relation from observations.  This reasoning suggests that thisparticular measure of skill may possibly favor the statistical models compared to the dynamicalmodels simply because the ocean dominates the verification area. Our results suggest that three of the dynamical models respond predominantly to one“flavor” of ENSO, characterized by maximum anomalies in the NINO3 region, while the fourthmodel responds predominantly to a different “flavor” of ENSO, characterized by maximumanomalies in the NINO3.4 region (both flavors also have significant amplitudes in midlatitudes,but the precise structure depends on the method used to extract the pattern).  Perhaps somecombination of the two patterns will lead to a better specification model.  The fact that classicalCCA forecasts over the 50-year period optimize skill when about 11 predictors are used, a resultsupported by Barnston and Smith (1996), suggests that many more “flavors” of predictablepatterns remain to be identified and simulated.  It is hoped that the evidence presented here ofdynamical predictability arising from distinct SST patterns can guide modelers in the



34

development of improved dynamical prediction models.
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9. Appendix: Centered vs. Uncentered Pattern Correlations
In this appendix we briefly discuss the merits of using centered versus uncenteredanomaly pattern correlations.  In model comparison studies, it is routine practice to consider only the “anomaly pattern,”which is the field after the sample mean over all years has been subtracted.  By definition, thetime mean anomaly vanishes, but the spatial mean anomaly may not.  When computing thepattern correlation between two anomaly fields, an investigator must decide whether to subtractthe spatial average of the anomaly.  If the spatial average is not subtracted, then we call this anuncentered anomaly pattern correlation, and compute it according to (9).  If the spatial average issubtracted, then we call this a centered anomaly pattern correlation, and compute it according to 

The centered anomaly pattern correlation is simply the standard correlation coefficient inclassical statistics.  Many studies do not state clearly whether the centered or uncentered patterncorrelation coefficient is used.  Both versions are convenient skill scores since they both liebetween -1 and +1, give +1 for a perfect forecast, and vanish for a climatological forecast (i.e.,for f = 0).  There seems to be a tendency to prefer the centered version since it corresponds to theversion used in classical statistics for which various sampling distributions are known.  However,these sampling distributions require knowledge of the number of degrees of freedom in thespatial field, which is rarely known.  The distinction between these two metrics is not importantfor global scale domains in which the anomaly field contain compensating positive and negative

(20)
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values, which might explain why many studies neglect to note the distinction.  An instructive example in which the uncentered and centered correlations give differentresults is shown in fig. 13, which shows the anomaly pattern for the observed TCAS and theensemble mean TCAS hindcasted by three models for the year 1986 (by “anomaly pattern,” wemean the field minus the average field over 1982-1998).  We draw attention to the fact that theanomaly for the COLAv2.2 model is mostly negative whereas the observed anomaly is mostlypositive.  Most forecasters would conclude from these figures that the skill of the COLAv2.2hindcast for this year was poor.  Yet, the centered ACC is positive for this case because thepatterns share some similarity after the spatial average of each field is subtracted.  In contrast, theuncentered ACC is strongly negative, indicating a poor forecast.  In any real forecast scenario, aforecaster would examine the anomaly pattern of a forecast, not the anomaly minus its spatialaverage.  Thus, the uncentered ACC appears to conform better to a forecasters subjective rankingof a forecast than the centered ACC.  The other anomaly patterns shown in the figure also havevery different centered and uncentered ACCs.  In each case, we believe the uncentered ACCcorresponds more closely to a forecasters subjective ranking of the hindcasts than the centeredACC.  The uncentered ACC can be interpreted as a measure of how well the hindcasts reproducethe sign and anomaly structure of the verification.  Therefore, we have preferred the uncenteredACC in this study to quantify the skill of hindcasts as a function of year.  
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10. Table Captions
Table 1: Description of contents in subsequent tables.  Table 2: Skill statistics of the ensemble mean dynamical model hindcasts of TCAS for theperiod 1982-1998.  See table 1 for explanation of the different columns. Table 3: The cross-validated skill of “classical” CCA forecasts of JFM surfacetemperature, with predictors derived from JFM ensemble mean dynamical hindcasts, verifiedover the period 1982-1998.  By “classical,” we mean the predictors and predictands are selectedfrom the leading principal components of both fields, and the statistical forecast is computed bymethods that are standard in CCA.  The table shows results only for forecasts that minimized thecross validated mean square error for the given model and variable.  See table 1 for explanationof the different columns.  The last 3 rows of the table show the CCA forecast based on trainingdata in the period 1950-1999, but verified in cross validated sense in the period 1982-1998.Table 4: Predictors of local JFM surface temperature examined in this paper, and thetables which summarize the skill statistics for each predictor.  The brackets !" indicate ensembleaverage.Table 5: Skill statistics of linear regression forecasts of local JFM surface temperature,with predictors based on the leading principal components of the model variable indicated in thetable, for the period 1982-1998.  The table shows only forecasts that minimized the mean squareerror for the given model and variable.  The last two rows of the table show the skill of a purelystatistical local prediction derived from the leading principal components of SST, trained overthe periods 1950-1999 (last row) and 1982-1998 (second to last row) (both forecasts are crossvalidated over the same period 1982-1998).  “COLAv2.2-50" indicates that the 50-year period
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1950-1999 was used to obtain the principal components and train the regression forecast derivedfrom COLAv2.2, but the skill is cross validated over the same period as all the others, namely1982-1998.  See table 1 for explanation of the different columns.  Table 6: Skill statistics of linear regression forecasts of local JFM surface temperaturewith predictors based on canonical variates, for the period 1982-1998.  In all cases tabulated, theobserved land surface temperature is the predictand used in CCA.  The table lists the predictorsused in CCA, which also is the canonical variate used for linear regression forecasts.  The tableshows only forecasts that minimized the mean square error for the given model variable.  The lastrow of the table shows the skill of a purely statistical local forecast derived from the canonicalvariates of SST, trained over the period 1950-1999 but verified over the period 1982-1998 Table 7: Skill statistics of linear regression forecasts of local JFM surface temperaturewith predictors based on canonical variates, for the period 1982-1998.  In all cases tabulated,SST is the predictor used in CCA, and the model variable indicated in the table is the predictandused in CCA.  The canonical variate used as a predictor for linear regression is stated in the“predictor variable” column.  The table shows only forecasts that minimized the mean squarecross validated error in the period 1982-1998 for the given model variable. Table 8: Results of linear regression forecasts of local JFM surface temperature withpredictors derived from signal-to-noise discriminants of the dynamical models indicated in thetable for the period 1982-1998.   The last two rows show the results for discriminants estimatedfrom the period 1950-1999, but whose forecasts were verified over the period 1982-1998.  Thetable shows only forecasts that minimized the mean square error for the given model variable. 
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11. Figure Captions
Figure 1: Correlation between observed and model forecasted JFM land surfacetemperature for the period 1982-1998.  Each model forecast grid was interpolated onto theobservation grid.  The 5% significance level of the correlation coefficient for this data set is 0.39.Areas with no shading indicate areas with insufficient data.Figure 2: The uncentered anomaly pattern correlation between observed and modelforecasted JFM land surface temperature corresponding to the raw hindcasts displayed in fig. 1.Figure 3: Local signal-to-noise ratio of JFM land surface temperature of four dynamicalmodel hindcasts for the period 1982-1998.  Signal is defined as the ensemble mean hindcast, andnoise as deviations about the ensemble mean.  Large signal-to-noise ratios near coastalboundaries are an artifact of the prescribed SST boundary conditions.  Figure 4: Leading empirical orthogonal functions (EOFs) and principal components (PCs)of ensemble mean, JFM, land surface temperature of four dynamical model hindcasts for theperiod 1982-1998.  The percent of variance explained by each model, relative to the totalvariance of the ensemble mean, is indicated above each EOF.  The PCs have been normalized tounit variance, and the EOFs have been normalized such that the PC times the EOF, summed overall components, exactly reproduces the original data.Figure 5: Leading canonical pattern between JFM, ensemble mean, land surfacetemperature in each model, and the simultaneous JFM mean SST, for the period 1982-1998.  Thenumber of principal components in each CCA is indicated above each pattern.  The associatedSST patterns are nearly identical to each other (all pair-wise SST anomaly correlationcoefficients exceed 0.98).  The canonical variates have been normalized to unit variance, and the
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canonical pattern has been normalized such that the variate times the pattern, summed over allcomponents, exactly reproduces the original data.Figure 6: Signal-to-noise discriminants of JFM land surface temperature hindcasts for theperiod 1982-1998.  These structures optimize the signal-to-noise ratio in each model.  The valueof the signal-to-noise ratio and associated mutual information (see text for explanation) areindicated above the variates.  The variates have been normalized to unit variance, and thediscriminants have been normalized such that the variate times the discriminant, summed over allcomponents, exactly reproduces the original data.Figure 7: Correlation between observed and CCA-corrected model hindcasts of JFM landsurface temperature for the period 1982-1998.  The 5% significance level of the correlation is0.39.  Areas with no shading indicate areas with insufficient data.Figure 8: Difference between the (uncentered) anomaly pattern correlation of “CCA-corrected” model forecasts of JFM land surface temperature, and the raw model forecasts. Positive values indicate that the CCA-corrected model forecasts has more skill than theuncorrected forecasts.  By “CCA-corrected,” we mean that CCA has been applied to theobservations and ensemble mean hindcasts, and then a classical CCA forecast for the observedtemperature has been constructed using model hindcast as a predictor.   Figure 9: Specification skill of a “classical” CCA forecast of JFM land surfacetemperature, using JFM SST as predictors.  The top figure shows the cross validated correlationbetween observed and forecasted JFM surface temperature for the period 1982-1998, and thebottom shows the (uncentered) anomaly correlation of the forecast.  The CCA forecast wastrained using data in the period 1950-1999.  The overall specification skill metrics are: EV =
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0.14, LMI = 0.14, MSE = 2.95, RHOM = 0.27.Figure 10: Spatially averaged correlation coefficient (RHOM) between locally observedTCAS and the locally forecasted value by the models indicated on the abscissa for the period1982-1998.  The listed models should be self evident from the discussion in secs. 6-7 and table 4. The dashed line gives the spatially averaged correlation coefficient for a linear specification ofTCAS based on the first PC of SST (RHOM = 0.17).  Figure 11: The second leading canonical pair of patterns between observed TCAS andensemble mean forecasted TCAS for the NCEP model.  CCA was applied to the leading 6principal components of each field.  The bottom figure shows the amplitude of each canonicalpattern.  Figure 12: Covariance between local SST and the time series shown above, which is thetime series displayed in fig. 11 for the second leading canonical variate between the NCEPhindcasted TCAS and observed land surface temperature.  The top figure can be interpreted as anestimate of the SST pattern that is maximally correlated with the specified time series.Figure 13: Anomaly pattern of the observed JFM land surface temperature, and of theensemble mean TCAS hindcast of three dynamical models, for the year 1986.  The anomalypattern is computed with respect to the 1982-1998 average.  The explained variance (“EV”),centered anomaly pattern correlation (“C_ACC”), and uncentered anomaly pattern correlation(“UC_ACC”) of each field, relative to the observed anomaly, is shown at the bottom left in eachfigure.  Note that the centered and uncentered correlations differ subtantially, and that theuncentered version is more consistent with how a forecaster would subjective rank the hindcasts.  
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Figure 1: Correlation between observed and model forecasted JFM land surface temperature forthe period 1982-1998.  Each model forecast grid was interpolated onto the observation grid.  The5% significance level of the correlation coefficient for this data set is 0.39. Areas with no shadingindicate areas with insufficient data.
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Figure 2: The uncentered anomaly pattern correlation between observed and model forecastedJFM land surface temperature corresponding to the raw hindcasts displayed in fig. 1.
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Figure 3: Local signal-to-noise ratio of JFM land surface temperature of four dynamical modelhindcasts for the period 1982-1998.  Signal is defined as the ensemble mean hindcast, and noiseas deviations about the ensemble mean.  Large signal-to-noise ratios near coastal boundaries arean artifact of the prescribed SST boundary conditions.  
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Figure 4: Leading empirical orthogonal functions (EOFs) and principal components (PCs) ofensemble mean, JFM, land surface temperature of four dynamical model hindcasts for the period1982-1998.  The percent of variance explained by each model, relative to the total variance of theensemble mean, is indicated above each EOF.  The PCs have been normalized to unit variance,and the EOFs have been normalized such that the PC times the EOF, summed over allcomponents, exactly reproduces the original data.
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Figure 5: Leading canonical pattern between JFM, ensemble mean, land surface temperature ineach model, and the simultaneous JFM mean SST, for the period 1982-1998.  The number ofprincipal components in each CCA is indicated above each pattern.  The associated SST patternsare nearly identical to each other (all pair-wise SST anomaly correlation coefficients exceed0.98).  The canonical variates have been normalized to unit variance, and the canonical patternhas been normalized such that the variate times the pattern, summed over all components, exactlyreproduces the original data.
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Figure 6: Signal-to-noise discriminants of JFM land surface temperature hindcasts for the period1982-1998.  These structures optimize the signal-to-noise ratio in each model.  The value of thesignal-to-noise ratio and associated mutual information (see text for explanation) are indicatedabove the variates.  The variates have been normalized to unit variance, and the discriminantshave been normalized such that the variate times the discriminant, summed over all components,exactly reproduces the original data.
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Figure 7: Correlation between observed and CCA-corrected model hindcasts of JFM land surfacetemperature for the period 1982-1998.  The 5% significance level of the correlation is 0.39. Areas with no shading indicate areas with insufficient data.
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Figure 8: Difference between the (uncentered) anomaly pattern correlation of “CCA-corrected”model forecasts of JFM land surface temperature, and the raw model forecasts.  Positive valuesindicate that the CCA-corrected model forecasts has more skill than the uncorrected forecasts. By “CCA-corrected,” we mean that CCA has been applied to the observations and ensemblemean hindcasts, and then a classical CCA forecast for the observed temperature has beenconstructed using model hindcast as a predictor.   
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Figure 9: Specification skill of a “classical” CCA forecast of JFM land surface temperature,using JFM SST as predictors.  The top figure shows the cross validated correlation betweenobserved and forecasted JFM surface temperature for the period 1982-1998, and the bottomshows the (uncentered) anomaly correlation of the forecast.  The CCA forecast was trained usingdata in the period 1950-1999.  The overall specification skill metrics are: EV = 0.14, LMI = 0.14,MSE = 2.95, RHOM = 0.27.
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Figure 10: Spatially averaged correlation coefficient (RHOM) between locally observed TCASand the locally forecasted value by the models indicated on the abscissa for the period 1982-1998. The listed models should be self evident from the discussion in secs. 6-7 and table 4.  The dashedline gives the spatially averaged correlation coefficient for a linear specification of TCAS basedon the first PC of SST (RHOM = 0.17).  



58

Figure 11: The second leading canonical pair of patterns between observed TCAS and ensemblemean forecasted TCAS for the NCEP model.  CCA was applied to the leading 6 principalcomponents of each field.  The bottom figure shows the amplitude of each canonical pattern.  
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Figure 12: Covariance between local SST and the time series shown above, which is the timeseries displayed in fig. 11 for the second leading canonical variate between the NCEP hindcastedTCAS and observed land surface temperature.  The top figure can be interpreted as an estimate ofthe SST pattern that is maximally correlated with the specified time series.
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Figure 13: Anomaly pattern of the observed JFM land surface temperature, and of the ensemblemean TCAS hindcast of three dynamical models, for the year 1986.  The anomaly pattern iscomputed with respect to the 1982-1998 average.  The explained variance (“EV”), centeredanomaly pattern correlation (“C_ACC”), and uncentered anomaly pattern correlation(“UC_ACC”) of each field, relative to the observed anomaly, is shown at the bottom left in eachfigure.  Note that the centered and uncentered correlations differ subtantially, and that theuncentered version is more consistent with how a forecaster would subjective rank the hindcasts.  
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12. Tables
Column Label DescriptionVariable variable used in CCA, EOF, or S2NDA.predictor variable indicates which of the two patterns from CCA (either SST or the modelvariable) was used as a predictor for surface temperaturenpred number of canonical variates used as predictors in linear regressionneof number of EOFs used to perform CCAEV spatially averaged explained variance of cross validated linear regressionforecastsLMI spatial average localized mutual information of cross validated linearregression forecastsrhom spatial average correlation coefficient of cross validated linear regressionforecastsmse spatially averaged mean square error of cross validated linear regressionforecasts

Table 1: Description of contents in subsequent tables.  
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Model EV LMI rhomNASA 0.00 0.11 0.27NCEP -0.04 0.13 0.21COLAv1.11 -0.21 0.15 0.24COLAv2.2 0.16 0.19 0.32Table 2: Skill statistics of the ensemble mean dynamical model hindcasts of TCAS for the period1982-1998.  See table 1 for explanation of the different columns. 
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Variable Model npred neof EV LMI mse rhomTCAS NASA 2 8 0.17 0.13 2.85 0.18Z500 NASA 1 1 0.09 0.10 3.14 0.24TCAS NCEP 2 6 0.32 0.30 2.34 0.40Z500 NCEP 2 5 0.17 0.18 2.85 0.31TCAS COLAv1.11 1 9 0.00 0.04 3.49 0.11Z500 COLAv1.11 1 1 0.09 0.10 3.13 0.24TCAS COLAv2.2 3 6 0.17 0.20 2.85 0.28Z500 COLAv2.2 1 1 0.20 0.18 2.77 0.30TCAS COLAv2.2-50 1 1 0.10 0.07 3.11 0.17Z500 COLAv2.2-50 1 1 0.14 0.14 2.95 0.27SST HADSST50 1 1 0.14 0.14 2.95 0.27Table 3: The cross-validated skill of “classical” CCA forecasts of JFM surface temperature, withpredictors derived from JFM ensemble mean dynamical hindcasts, verified over the period 1982-1998.  By “classical,” we mean the predictors and predictands are selected from the leadingprincipal components of both fields, and the statistical forecast is computed by methods that arestandard in CCA.  The table shows results only for forecasts that minimized the cross validatedmean square error for the given model and variable.  See table 1 for explanation of the differentcolumns.  The last 3 rows of the table show the CCA forecast based on training data in the period1950-1999, but verified in cross validated sense in the period 1982-1998.
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Variable Analysis Table!TCAS"_MODEL from EOF(!TCAS"_MODEL) table 5!Z500"_MODEL from EOF(!Z500"_MODEL) table 5!TCAS"_MODEL from CCA(TCAS_OBS, !TCAS"_MODEL) table 6!Z500"_MODEL from CCA(TCAS_OBS, !Z500"_MODEL) table 6SST from CCA(!TCAS"_MODEL, SST) table 7!TCAS"_MODEL from CCA(!TCAS"_MODEL, SST) table 7SST from CCA(!Z500"_MODEL, SST) table 7!Z500"_MODEL from CCA(!Z500"_MODEL, SST) table 7TCAS_MODEL from S2NDA(TCAS_MODEL) table 8Z500_MODEL from S2NDA(Z500_MODEL) table 8SST from EOF(SST) table 5SST from CCA(TCAS_OBS, SST) table 6
Table 4: Predictors of local JFM surface temperature examined in this paper, and the tables whichsummarize the skill statistics for each predictor.  The brackets !" indicate ensemble average.
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Variable Model neof EV LMI mse rhomTCAS NASA 4 0.07 0.10 3.21 0.21Z500 NASA 1 0.08 0.07 3.16 0.17TCAS NCEP 4 0.18 0.17 2.81 0.24Z500 NCEP 5 0.12 0.19 3.04 0.31TCAS COLAv1.11 1 -0.07 -0.04 3.73 -0.10Z500 COLAv1.11 1 0.09 0.08 3.15 0.17TCAS COLAv2.2 1 0.14 0.12 2.98 0.21Z500 COLAv2.2 1 0.19 0.16 2.80 0.26TCAS COLAv2.2-50 1 0.08 0.04 3.17 0.09Z500 COLAv2.2-50 2 0.07 0.08 3.21 0.22SST HADSST 1 0.12 0.08 3.04 0.17SST HADSST50 1 0.13 0.12 3.01 0.22Table 5: Skill statistics of linear regression forecasts of local JFM surface temperature, withpredictors based on the leading principal components of the model variable indicated in the table,for the period 1982-1998.  The table shows only forecasts that minimized the mean square errorfor the given model and variable.  The last two rows of the table show the skill of a purelystatistical local prediction derived from the leading principal components of SST, trained over theperiods 1950-1999 (last row) and 1982-1998 (second to last row) (both forecasts are crossvalidated over the same period 1982-1998).  “COLAv2.2-50" indicates that the 50-year period1950-1999 was used to obtain the principal components and train the regression forecast derivedfrom COLAv2.2, but the skill is cross validated over the same period as all the others, namely1982-1998.  See table 1 for explanation of the different columns.  
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 Variable Model npred neof EV LMI mse rhomTCAS NASA 2 8 0.17 0.13 2.85 0.18Z500 NASA 1 1 0.08 0.07 3.16 0.17TCAS NCEP 2 6 0.32 0.30 2.34 0.40Z500 NCEP 2 5 0.17 0.18 2.85 0.30TCAS COLAv1.11 1 1 -0.07 -0.03 3.73 -0.10Z500 COLAv1.11 1 2 0.09 0.10 3.14 0.19TCAS COLAv2.2 3 7 0.16 0.21 2.90 0.29Z500 COLAv2.2 1 1 0.19 0.16 2.80 0.26TCAS COLAv2.2-50 1 1 0.08 0.04 3.17 0.09Z500 COLAv2.2-50 1 12 0.12 0.11 3.04 0.25SST HADSST50 1 1 0.13 0.12 3.01 0.22Table 6: Skill statistics of linear regression forecasts of local JFM surface temperature withpredictors based on canonical variates, for the period 1982-1998.  In all cases tabulated, theobserved land surface temperature is the predictand used in CCA.  The table lists the predictorsused in CCA, which also is the canonical variate used for linear regression forecasts.  The tableshows only forecasts that minimized the mean square error for the given model variable.  The lastrow of the table shows the skill of a purely statistical local forecast derived from the canonicalvariates of SST, trained over the period 1950-1999 but verified over the period 1982-1998 
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 ModelVariable Model predictorvariable npred neof EV LMI mse rhomTCAS NASA SST 2 9 0.14 0.16 2.95 0.32TCAS NASA TCAS 2 3 0.11 0.10 3.07 0.19Z500 NASA SST 1 4 0.13 0.11 3.00 0.21Z500 NASA Z500 4 6 0.09 0.18 3.14 0.28TCAS NCEP SST 1 3 0.15 0.10 2.94 0.17TCAS NCEP TCAS 8 10 0.19 0.22 2.78 0.30Z500 NCEP SST 1 3 0.13 0.12 2.98 0.22Z500 NCEP Z500 5 6 0.27 0.31 2.53 0.34TCAS COLAv1.11 SST 3 9 0.18 0.16 2.83 0.32TCAS COLAv1.11 TCAS 1 7 0.00 0.00 3.50 0.00Z500 COLAv1.11 SST 1 8 0.15 0.14 2.93 0.24Z500 COLAv1.11 Z500 3 10 0.15 0.19 2.92 0.28TCAS COLAv2.2 SST 1 3 0.12 0.11 3.03 0.22TCAS COLAv2.2 TCAS 4 8 0.29 0.29 2.46 0.36Z500 COLAv2.2 SST 1 1 0.12 0.08 3.04 0.17Z500 COLAv2.2 Z500 1 1 0.19 0.16 2.80 0.26TCAS COLAv2.2-50 SST 2 13 0.17 0.20 2.87 0.36TCAS COLAv2.2-50 TCAS 1 10 0.17 0.16 2.86 0.23Z500 COLAv2.2-50 SST 3 15 0.22 0.25 2.68 0.39Z500 COLAv2.2-50 Z500 2 7 0.11 0.10 3.06 0.23Table 7: Skill statistics of linear regression forecasts of local JFM surface temperature withpredictors based on canonical variates, for the period 1982-1998.  In all cases tabulated, SST isthe predictor used in CCA, and the model variable indicated in the table is the predictand used inCCA.  The canonical variate used as a predictor for linear regression is stated in the “predictorvariable” column.  The table shows only forecasts that minimized the mean square cross validatederror in the period 1982-1998 for the given model variable. 
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ModelVariable Model npred neof EV LMI mse rhomTCAS NASA 1 8 0.17 0.12 2.86 0.20Z500 NASA 1 10 0.20 0.20 2.76 0.29TCAS NCEP 3 10 0.21 0.20 2.72 0.30Z500 NCEP 3 4 0.21 0.25 2.72 0.34TCAS COLAv1.11 4 9 0.06 0.07 3.24 0.15Z500 COLAv1.11 1 10 0.15 0.13 2.94 0.22TCAS COLAv2.2 4 9 0.18 0.24 2.84 0.32Z500 COLAv2.2 1 7 0.19 0.17 2.78 0.25TCAS COLAv2.2-50 4 14 0.24 0.34 2.60 0.44Z500 COLAv2.2-50 1 1 0.18 0.18 2.83 0.27Table 8: Results of linear regression forecasts of local JFM surface temperature with predictorsderived from signal-to-noise discriminants of the dynamical models indicated in the table for theperiod 1982-1998.   The last two rows show the results for discriminants estimated from theperiod 1950-1999, but whose forecasts were verified over the period 1982-1998.  The table showsonly forecasts that minimized the mean square error for the given model variable. 


