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Climate model fidelity and projections of climate change
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[1] Relative entropy, which is a measure of the difference
between two probability distributions, has been calculated
for the simulations of the climate of the 20th century from
13 climate models and the observed surface air temperature
during the past 100 years. This quantity is used as a
measure of model fidelity: a small value of relative entropy
indicates that a given model’s distribution is close to the
observed. It is found that there is an inverse relationship
between relative entropy and the sensitivity of the model to
doubling of the concentration of CO,. The models that have
lower values of relative entropy, hence have higher fidelity
in simulating the present climate, produce higher values of
global warming for a doubling of CO,. This suggests that
the projected global warming due to increasing CO, is
likely to be closer to the highest projected estimates among
the current generation of climate models. Citation: Shukla, J.,
T. DelSole, M. Fennessy, J. Kinter, and D. Paolino (2006), Climate
model fidelity and projections of climate change, Geophys. Res.
Lett., 33, 107702, doi:10.1029/2005GL025579.

[2] The climate modeling community of the world has
made major advances over the past 30 years in building
models and estimating the nature of changes in the Earth’s
climate due to increases in CO,. It has been found, however,
that different models give different estimates of the increase
in global temperature for a given increase in the concentra-
tion of CO, [Houghton et al., 2001]. The primary reason for
differences in the estimates of the influence of CO, has been
attributed to differences in the parameterization of cloudi-
ness and cloud-radiation interactions [Houghton et al.,
2001]. In the absence of any other information, estimates
from equally plausible climate models are usually given
equal weight. Forty years ago, when weather prediction
models were used to estimate the predictability of weather,
they produced very different estimates of the predictability
[Charney et al., 1966]; however, the weather prediction
models of today have converged to a consistent value for
the upper limit of weather predictability [Simmons and
Hollingsworth, 2002]. Likewise, when the atmospheric
general circulation models of 10 years ago were used for
estimating the dynamical seasonal predictability, different
models gave different estimates of the influence of a given
global sea surface temperature anomaly (see the special
2000 issue of Quarterly Journal of the Royal Meteorolog-
ical Society, 126, 1991-2350, on dynamical seasonal pre-
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diction). It is only recently that most atmospheric general
circulation models produce comparable estimates of the
atmospheric response to a given sea surface temperature
anomaly. The simulations of the annual cycle in the tropical
Pacific and El Nifo and the Southern Oscillation (ENSO)
were highly variable among different models about 10 years
ago, and only recently have most of the coupled ocean-
atmosphere models shown some similarity in their predic-
tion of large ENSO events. These results suggest that
improvements in the models’ ability to simulate the ob-
served variability leads consistently to improvements in the
skill of forecasts, especially for daily weather and seasonal
time scales.

[3] In this paper, we consider a common extension of
these results and investigate whether or not the projection
of the future climate due to the increase in CO, concen-
tration made by a given climate model depends on that
model’s ability to simulate the annual cycle and the
interannual variability of the present climate. In order to
examine such a relationship, we need a metric to define
models’ fidelity in simulating the present climate. Typical
measures such as root mean square error or anomaly
pattern correlation are inappropriate for this purpose be-
cause they measure the “closeness™ of two states (unless
one is comparing mean states). Instead, we need to
measure the closeness of two distributions, in particular,
the observed and simulated distributions. A “perfect”
model under this measure is one that correctly simulates
the annual cycle and the statistics of intraseasonal vari-
ability, not necessarily the precise field at a given time.
For this purpose, we have chosen a quantity known as
relative entropy [Kullback, 1959; Cover and Thomas,
1991; Kleeman, 2002; DelSole, 2004; Tippett et al.
2004] (also see Appendix A). Some basic properties of
relative entropy include: it is nonnegative, it vanishes if
and only if the two distributions are identical, and it is
invariant with respect to invertible non-linear transforma-
tions, and hence is independent of the basis set in which
the variables are represented.

[4] We have computed the relative entropy between
simulations of the climate of the 20th century and the
observations of seasonal mean surface air temperature for
the 100-year period 1899—1998. In this study, a season
corresponds to one of a sequence of non-overlapping three-
month periods starting from January—February—March. The
annual cycle is defined at each grid point as the 100-year
average value for each season minus the 100-year annual
mean value; hence, the annual cycle is specified by four
numbers at each grid point. The seasonal anomaly is defined
at each grid point as the seasonal mean value minus the
appropriate annual cycle value. To calculate relative entro-
py, all variables were assumed to be joint normally distrib-
uted; this assumption is reasonable in view of the Central
Limit Theorem and the fact that the seasonal mean
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Table 1. Relative Entropy, Model Sensitivity, Cyclostationary
Relative Entropy and Mean Square Difference for 13 IPCC AR4
Models®

Relative Sensitivity, Cyclostationary ~ Mean Square
Model  Entropy  °K (Land Only) Relative Entropy Difference
1 5.62 5.21 5.49 5.68
2 5.73 4.41 1.69 3.54
3 6.99 3.34 4.89 7.40
4 8.67 3.34 2.13 3.50
5 9.47 3.55 4.24 5.62
6 9.70 4.20 4.63 4.67
7 10.85 2.78 432 4.36
8 10.98 4.10 7.7 9.79
9 13.30 4.05 4.61 8.52
10 15.97 2.76 5.81 7.24
11 17.40 2.78 7.72 10.41
12 17.96 2.89 6.45 10.03
13 19.57 2.51 9.26 9.03

Relative entropy, cyclostationary relative entropy and mean square
difference are as defined in the text. Model sensitivity is the area-weighted
global average change in surface temperature between the IPCC A1B
scenario (years 71—100) and the present climate (20C3M, years 1971—
2000). The rows of the table are ordered in ascending values of relative
entropy, and identification of the models is omitted.

temperature is approximately a 90-day average of a
quantity whose variability is well simulated by a first order
autoregressive model with decorrelation time of about 6 days
[Madden, 1979]. Even if the distributions are not Gaussian,
relative entropy provides a useful measure of the difference
in means and covariances that is invariant with respect to
linear transformations, and hence does not depend on the
coordinate system in which the data is represented. In
addition, we assume that the structures in which we are
most interested are the leading principal components of the
observed system. The principal components in this study
were computed in two different ways. In the first way,
the principal components (PCs) that maximize the area-
weighted variance of the seasonal anomalies were com-
puted. The resulting PCs are of length 400—4 seasons per
year for 100 years. The relative entropy computed from
these PCs will be called simply “relative entropy.” In the
second way, four consecutive seasonal anomalies of each
year were concatenated to form an augmented state vector
that is four times larger than the original state vector, then
the principal components that maximize the area-weighted
variance of the augmented state vectors were computed.
The resulting PCs are of length 100. The relative entropy
computed from these PCs will be called “cyclostationary
relative entropy.” The essential difference between the two
ways of computing relative entropy is that the former
calculation has PCs of length 400 but neglects the seasonal
variation in variance, whereas the latter calculation has
PCs of length 100 but accounts for the seasonal variation
in variance.

[s] We have also computed the sensitivity to changing
greenhouse gases for 13 coupled climate models by
taking the difference between two sets of numerical
experiments. The first set is for scenario A1B, in which
the CO, concentration is increased from the current
value by 1% per year until it has doubled at a level
of 720 ppm, and held constant thereafter. The second set
is for the climate of the 20th century (20C3M), in which
the models are forced based on the observed time series
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of CO, for the past 100 years. These two sets of numerical
experiments are a subset of those prepared for the Intergov-
ernmental Panel on Climate Change (IPCC) Fourth Assess-
ment Report (AR4), whose data are available from the
IPCC Data Archive (the data are defined on URL:
http://www-pcmdi.llnl.gov/ipce/standard output.html).
The 13 models (listed alphabetically: CNRM-CM3, GFDL-
CM2.1, GISS-AOM, GISS-EH, GISS-ER, IPSL-CM4,
MIROC3.2(hires), MIROC3.2(medres), MPI-ECHAMS,
MRI-CGCM2.3.2, NCAR-CCSM3, NCAR-PCM, UKMO-
HadCM3; see URL, http://www-pcmdi.llnl.gov/ipcc/model
documentation/ipcc_model documentation.php) were cho-
sen for this study based on data availability at the time of
the analysis.

[6] We have chosen to compare the models and observa-
tions in a state space defined by the leading 15 principal
components of the observed seasonal mean surface temper-
ature anomaly field derived from HADCRUT2 (the 5°x5°
gridded surface air temperature analysis of Jones and
Moberg [2003]; see URL: http://www.cru.uea.ac.uk/cru/da-
ta/temperature/). This truncation for the PCs captures at
least 65% of the variance of the seasonal means, and is thus
a natural basis set for measuring how well each model
reproduces the observations. Importantly, we include only
those grid points in HADCRUT?2 for which there are at
least two months per season for the full 1899-1998
period.

[7] Table 1 shows the values of relative entropy and
model sensitivity for each of the 13 models analyzed. The
rows of Table 1 are ordered in ascending values of
relative entropy, and identification of the models is
omitted. The sensitivity is defined as the area-weighted
global average of the change in surface air temperature
between the 720 ppm stabilization experiment (A1B; years
71-100 average) and the 20C3M integration (years 1971—
2000). The scenario A1B includes a 1% per year increase
in CO, concentration, until year 70, after which the
concentration is held constant at a value of 720 ppm.
All models had not continued the integration for an
additional 100 years after doubling, so years 71—100 were
used in this study. In general, the models which had
continued for an additional 100 years show that the global
average temperature change for years 171-200 is about 1°
K higher than that for years 71—-100. The sensitivity, as
well as the PCs, were calculated for land grid points only.
The values of sensitivity are plotted against relative
entropy in Figure 1. Estimates of the uncertainty in the
surface temperature change (based on the average standard
deviation among ensemble members for those models for
which multiple realizations are available), for each model
are shown as error bars.

[s] The 99% confidence interval of relative entropy for
the sample size appropriate for this study and PC trunca-
tion of 15 is less than 1.1 under the null hypothesis that
the two samples are drawn from identical distributions. A
scan of Table 1 shows that all estimated values of relative
entropy are well in excess of this value, indicating that all
simulated distributions differ significantly from observa-
tions. Furthermore, for every model examined, the value of
relative entropy is dominated by the term measuring the
difference in the annual cycle, rather than the differences
in covariances of seasonal anomalies. This result suggests
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Figure 1. Model sensitivity (surface air temperature
change over land) versus model relative entropy for 13
IPCC AR4 models. Estimates of the uncertainty in the
surface temperature change are shown as vertical error bars.
The line is a least-squares fit to the values.

that we should obtain similar results by measuring fidelity
simply by the area-averaged mean square difference be-
tween the observed and simulated annual cycles. This
measure has been tabulated in Table 1 and can be seen
to give results consistent with relative entropy.

[9] We find that there is an apparent relationship between
the models’ ability to simulate the annual cycle and inter-
annual variability of the present climate and their projection
for the climate change due to doubling of CO,. It is found
that models that have lower values of relative entropy, and
therefore can be considered to simulate the mean annual
cycle and the interannual variability of the present climate
more accurately, are more sensitive and produce higher
estimates of global warming. This negative correlation
between relative entropy and model sensitivity is found to
be nearly invariant with respect to the number of PCs used
to compute the relative entropy within the range of 5 to 15
PCs. This negative relation can be quantified in various
ways. The correlation coefficient between sensitivity and
the fidelity measures based on relative entropy, cyclosta-
tionary relative entropy, and mean square difference are
—0.74, —0.38, and —0.35 respectively, which are statisti-
cally significant at the 0.25%, 20%, and 24% levels,
respectively; the slope of the line plus its standard error
are —0.13 £ 0.03, —0.14 £ 0.11, and —0.11 + 0.09, all of
which differ from zero.

[10] Figure 2 shows the zonal mean (land points only)
sensitivity for two models: one with a low value of
relative entropy (Model 1; thick curve) and one with the
highest relative entropy (Model 10; thin curve). Once
again, the sensitivity is consistently higher for the model
with a lower value of relative entropy. Although the
relationship between relative entropy and model sensitivity
is not monotonic at all latitudes for all models (not
shown), there is a clear separation between the sensitivity
of the high and low relative entropy models, especially in
the tropical and Northern Hemisphere extratropical
regions.

[11] If we conjecture that models that better simulate the
present climate should be considered more credible in
projecting the future climate change, then this relationship
suggests that the actual changes in global warming will be
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closer to the highest projected estimates among the current
generation of models used in IPCC AR4.

Appendix A

[12] The relative entropy between two distributions, p1(x)
and p,(x), is defined as

R(p1,p2) = /pl IOg(i—;)dx

RM

(A1)

where the integral is a multiple integral over the range of the
M-dimensional vector x. The distribution of seasonal mean
surface temperature anomalies is assumed to be Gaussian.
Two different assumptions on the time series are considered.
The first, based on the “standard PCs” as defined in the
main text assumes that the second order moments are
stationary while the first order moments are periodically
stationary. Under these assumptions, the relative entropy
can be written as

1 » 1
Riovp) = 1os () #5770 (550}
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where p,Jk is the mean of p(x) in the k™ season, representing
the annual cycle, ¥; is the covariance matrix of pj(x),
assumed independent of season and based on seasonal
anomalies. The second, discussed in the main text, assumes
that the augmented state vector is stationary, for which the
relative entropy also is given by (A2), except that there is no
summation in the last term, and all covariance matrices and
means refer to the augmented state vector.

[13] The above expression is independent of nonsingular
linear transformations of x. As discussed by Kleeman
[2002] and DelSole [2004], the distribution of observed
temperature is appropriately identified with p;, and the
distribution of model simulated temperature with p,. It is
perhaps worth mentioning that relative entropy is a measure
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Figure 2. Zonal mean (land points only) sensitivity
(surface air temperature change) for two selected models:
(Model 1; relative entropy = 5.62; thick curve) and (Model
10; relative entropy = 15.97; thin curve).
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of the difference in variability without regard to how that
variability is correlated in time, and so is not a measure of
how well the “trend” or low frequency variability is
simulated. The first two terms essentially measure how well
the variability of seasonal anomalies in the simulation
approximates the variability in observations. The last term
measures how well the annual cycle is simulated by the
models.

[14] The principal components of observations were
computed by first projecting all model fields onto the
5% x 5% observational grid and masking out regions of
missing data, then multiplying the value at each grid point
by the square root of the cosine of latitude so that the
square of the value is weighted by area. The masking
procedure eliminates all but 301 grid points. The resulting
defined points cover most of North America, Europe, and
India, and certain coastal regions of East Asia, South
America, and Australia.

[15] The sampling distribution of relative entropy, under
the null hypothesis that the two M-dimensional multivariate
normal distributions p; and p, are identical, was determined
through Monte Carlo methods. The 99% confidence interval
for relative entropy computed in this way was verified
against the correct asymptotic results discussed extensively
by Kullback [1959]. The 1% significance level for 100 years
of data and 15 principal components was found to be 1.1.
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