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Abstract
The linear prediction of monsoon rainfall for 29 Indian subdivisions and all India isconsidered.  The predictors were selected by computing the regression model for every possiblecombination of predictors from a pool of ten predictors, and then selecting the combination that leadsto the smallest mean square error for the cross validated forecasts.  For all India and for mostsubdivisions, the results clearly demonstrate that prediction models with three or fewer predictorsperform much better than models with many more predictors.  The optimum prediction model forsome subdivisions can include as many as six predictors.  About half of the subdivisions appear to bepredictable, in the sense that the optimum linear prediction model for these regions have statisticallysignificant skill.  The tendency of Darwin pressure emerges as an important predictor, consistent withprevious studies, while the index of the quasi-biennial oscillation appears to be relatively useless. These results raise questions about the prediction models currently in use at the Indian MeteorologicalDepartment with 8-10 predictors and 17-21 fitted parameters.
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1. Introduction
In 1988, the India Meteorological Department (IMD) adopted the so-called 16-parameterpower regression model of Gowariker et al. (1989) as part of their official forecasts of Indianmonsoon rainfall.  Although this model employs 16 observed predictors, the model itself contains 49independent parameters (DelSole and Shukla 2002).  Furthermore, the 49 parameters of the powerregression model were estimated from 37 years of training data, suggesting the possibility ofoverfitting.  DelSole and Shukla (2002) further suggested that the “reasonably accurate” predictionsby the power regression model were only apparent because the skill of the forecasts were verifiedduring the period 1989-2000.  As noted by DelSole and Shukla (2002), this period was unusual in thesense that predictions based on the previous climatological mean had unusually high skill.  Indeed,only one year during this period had rainfall anomalies exceeding one standard deviation, an eventwhich had not occurred in any twelve year period since the 1930's (according to the data ofPatharsarthy et al. (1995), available from http://www.tropmet.res.in/data.html).  Furthermore, the oneyear in which the rainfall did exceed a standard deviation, namely the 1994 floods, was predicted bythe IMD to be a moderate drought.  The next significant event was the drought of 2002, which waspredicted by the IMD to have slightly above normal rainfall.  In 2003, the model was modified tomake use of only 10 predictors, but this model still contained at least 21 parameters that wereestimated from 38 years of observations (Rajeevan et al. 2004), again suggesting the possibility ofoverfitting.  These statistical and empirical considerations raise questions about the predictiveusefulness of the power regression model, and the use of a relatively large number of predictors. Given the tremendous societal importance of the Indian monsoon and associated predictions, thesequestions deserve serious attention by the scientific community.  

http://www.tropmet.res.in/data.html
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The purpose of this paper is to provide strong evidence that statistical prediction models ofIndian monsoon rainfall with many parameters have less skill than models with fewer parameters,e.g., a half dozen.  This evidence comes not only from predictions of total Indian monsoon rainfall,but also for predictions of rainfall in individual subdivisions.  Furthermore, this paper examines therelative importance of predictors in different subdivisions and shows that the tendency of Darwinpressure emerges as a major predictor, consistent with previous studies, and that the quasi-biennialoscillation has questionable merit as a predictor of recent monsoon rainfall.   2. Data
The time series used in this study (and their sources, in parentheses) are yearly values in theperiod 1951-2002 and are defined as follows:a. Indian monsoon rainfall in 29 subdivisions averaged over June-September, estimated fromobservations at 306 land stations uniformly distributed over India (Parthasarathy et al. 1995). The 29 subdivisions and their fractional areal coverage weight are tabulated in table 1. b. dtend: Darwin sea-level pressure tendency: March-April-May average minus December-January-February average. (NCEP, ftp.ncep.noaa.gov/pub/cpc/wd52dg/data/indices/)c. nino34mam: NINO3.4 (Pacific surface temperature over 170°W-120°W, 5°S-5°N), March-April-May average. (Hadley Center, Rayner et al. 2003, http://hadobs.metoffice.com/hadisst/)d. naojf: NAO (sea-level pressure difference between Gibraltar and Stykkisholmur, Iceland)January-February mean. (University of East Anglia; available from www.cru.uea.ac.uk) e. naoam: NAO (sea-level pressure difference between Gibraltar and Stykkisholmur, Iceland):April-May mean. (same as d) f. qbojfm: QBO index, January-February-March average (available from
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http://www.cdc.noaa.gov/ClimateIndices/Analysis/#QBO). g. wpacmam: SST averaged in the western Pacific region 120°E-160°E, 5°S-5°N, March-April-May average (same as c).h. eindmam: SST averaged in the eastern Indian Ocean region 70°E-100°E, 5°S-5°N, March-April-May average (same as c).i. arabmam: SST averaged in Arabian Sea region 50°E-70°E, 5°N-15°N, March-April-Mayaverage (same as c).j. teurodjf: Eurasian surface temperature (30°E-50°E, 60°N-70°N), December-January-Februaryaverage.  (Jones and Moberg 2003; available fromhttp://www.cru.uea.ac.uk/cru/data/temperature/).k. tindiamam: Indian surface temperature (55°E-75°E, 25°N-35°N), March-April-May average(same as j).The above time series differ from those used in DelSole and Shukla (2002) in several ways. First, the predictor “ridge,” equal to the latitude of the 500hPa ridge at 75°E during April, has beendropped, since its value exceeding four standard deviations of the 1951-1996 climatologicaldistribution after 1997.  Second, the tendency of NINO3.4, and the April average minus Januaryaverage Darwin pressure, have been dropped because they are highly correlated with (b) and ( c). Third, the following predictors have been added: an index of the quasi-biennial oscillation, andindices of the sea surface temperatures in the Indian ocean, Arabian Sea, and western Pacific.  Theselatter predictors have been added as proxies of predictors used by the Indian MeteorologicalDepartment (IMD) in their most recent forecasts (Rajeevan et al. 2004).  We would have preferred touse the same predictors as used by the IMD, but this data is not publicly available.  

http://www.cdc.noaa.gov/ClimateIndices/Analysis/#QBO)
http://www.cru.uea.ac.uk/cru/data/temperature/).
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3. Methodology
The prediction model considered in this paper is the linear regression model

1 2 Kwhere y is the predictand, here taken to be monsoonal rainfall, x , x , . . ., x  are K known predictors, e
1 2 Kis an error term, and ! , ! , . . ., !  are unknown regression parameters to be estimated from data.  Aconstant term is included by introducing an additional “predictor” whose value is always unity.  If theabove regression equation is written in matrix form as

then the least squares estimates of the regression parameters are

(von Storch and Zwiers 1999, pg. 159).  The least squares prediction of a new set of predictands y’based on a new set of predictors X’ is given by

We estimate the skill of the least squares model by “leave-one-out” cross validation.  In thisprocedure, the time series of length N is split into two parts, one of which is of length N - 1 and usedto construct least squares estimates of ! from (3), called the “training data,” and the other is of lengthone and used to verify the least squares prediction from (4), called the “verification data.”  Thedifference between the resulting prediction and the verification of y is called the cross-validated

(1)

(2)

(3)

(4)
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prediction.  This procedure is repeated, leaving out a different predictand in turn, until all predictandshave been used exactly once as verification.  The skill of the model is then measured by the root meansquare (rms) of the cross validated errors.  See Michaelson (1987) for more details of the technique.It should be recognized that the use of cross validation to select predictors and to measure skillleads to biased estimates of skill (DelSole and Shukla 2002).  Many regression procedures mitigatethis problem by adopting a model selection criterion that balances the apparent increase in skill, asmeasured in the training data, against the increase in the number of predictors; for example, Akaike’sInformation Criterion (Burnham and Anderson 2002) or the method of DelSole and Shukla (2002). Unfortunately, conclusions derived from the selected models are subject to the criticism that theydepend on the criterion used to select the models.  Since our goal is primarily to shed light on theoptimum number of predictors in monsoon prediction models, we have avoided the use of additionalselection criteria and simply show the variation of cross validated skill for all possible models. However, the bias inherent in our procedure should be kept in mind when interpreting the results.The “explained variance” EV of a prediction model is defined in this paper as

where brackets indicate a time average.  The numerator is the rms error while the denominator is thesample variance.  EV vanishes when all forecasts equal the sample mean, equals unity for a perfectprediction, and is negative for a forecast “worse” than a prediction based on the climatological mean.In this paper, we consider all possible subsets of the available predictors.  Since there are K =10 total predictors, there are 2  = 1024 distinct linear regression models (including the constant x(t) =10

(5)
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1).  A useful method for organizing the computations is to represent each number from 0 to 2 -1 in itsK
binary representation, assign a one-to-one correspondence between each predictor and each digit ofthe binary number, and then to include only those predictors which have a “one” in the correspondingdigit.  In this way, a single algorithmic loop can systematically search every possible combination,and all results can be archived by identifying each unique model with its corresponding number.  4. Results

The root mean square error of the cross validated predictions of all possible linear regressionmodels for total JJAS Indian monsoon rainfall is shown in fig. 1.  The dashed line indicates thestandard deviation of total Indian monsoon rainfall for the period 1951-2002.  The figure reveals thatthe best prediction model has three physical predictors and explains about 16% of the variance.  Theassociated optimal predictors are dtend, naoam, and tindiamam.  As discussed in DelSole and Shukla(2002), the fraction of explained variance and the precise optimal predictors are sensitive to thechoice of period and set of predictors.  The skill of the best prediction model with two predictors–which turn out to be dtend and naoam– is nearly indistinguishable from that of the optimumprediction model with three predictors, suggesting that the predictor tindiamam adds relatively littlepredictive skill.  The fact that the two predictors dtend and naoam arise as prominent predictors hereis consistent with the findings of DelSole and Shukla (2002, 2006).We repeated the above procedure but for predicting JJAS rainfall in each of the 29subdivisions comprising the total monsoon rainfall.  The optimal linear model in each subdivision istabulated in table 1.  We see that the optimum number of predictors lies in the range 0-6, with morethan two-thirds of the subdivisions having 3 or fewer predictors.  The correlation skill of the optimalmodels is also tabulated.  For reference, the 1% significance level for the correlation coefficient with
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50 samples is 0.32; correlations exceeding this have been indicated in bold.  Thus, table 1 indicatesthat a little over half of the subdivisions have statistically significant skill.  The spatial structure of thecorrelation skill is indicated in fig. 2 and suggests that the western half of India is “more predictable”than the eastern half. Maps of the subdivisions in which a given predictor is selected in the optimum linearprediction model are shown in fig. 3.  By far the most commonly selected predictor is dtrend, anindex of Darwin pressure tendency, which is selected in 21 of the 29 subdivisions.  This result isconsistent with the finding of Shukla and Paolino (1983) that the tendency of Darwin is a usefulpredictor of Indian monsoon rainfall.  Next most common is teurodjf, an index of European surfacetemperature, which is selected in 11 out of 29 subdivisions, but most of these subdivisions overlapwith the subdivisions in which teurodjf also is selected and therefore seems to be less useful.  Thepredictor tindiamam, an index of Indian surface temperature in spring, is selected in 9 out of 29subdivisions, but these subdivisions extend further eastward into the “unpredictable regions.”  Thelatter results may explain why tindiamam was selected as a useful predictor for total monsoon rainfall,namely because it is a useful predictor in the eastern region of India in which dtrend does not appearto be as useful.  Interestingly, qbojfm, an index of the quasi-biennial oscillation, is not selected in anysubdivision, suggesting that this time series is not as useful as other predictors.The above approach is not necessarily a good basis for distinguishing predictable regions,because the skill of the optimum prediction model is often not statistically different from othermodels with fewer predictors.  Two regions that appear to be influenced by different sets of predictorsaccording to the above criterion, may in fact be influenced predominantly by the same set ofpredictors because the additional predictors add so little skill that the difference is not statistically
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distinguishable.  Therefore, we do not advocate the above approach as a basis for defining“homogeneous regions.” It turns out that predicting each subdivision separately and summing the results improves,albeit marginally, the skill of the total Indian monsoon forecast: the correlation skill of the aggregatedpredictions is 0.49, compared to 0.41 for the skill of predicting total rainfall directly.  5. Discussion
The above results, especially fig. 1, show very clearly that a linear prediction based on tenpredictors is demonstrably worse than many of the models based on fewer predictors.  WhileRajeevan et al. (2004) explicitly recognized that the optimum number of predictors is a matter ofcontroversy, they stated that “[our] own assessment is that 8 to 10 predictors are required for . . .limiting the root mean square error of the results over the independent period to a minimum.”  We arebaffled by this statement because the power regression model of Rajeevan et al. (2004), of the form 

contains 2K+1 regression parameters for K predictors, which implies that their models contain 17 to21 regression parameters.  We are unable to understand how the power regression model can achievea minimum error variance in independent data using 17-21 parameters, when the regression modelsconsidered in this paper, which are special cases of the power regression model, achieve a minimumusually with three or fewer parameters.  While it is true that the power regression model is nonlinear,nonlinearity often increases the difficulty of estimating and justifying the relevance of predictors,rather than the reverse.  Similarly, while it is true that the predictors used by the IMD are not available

(6)
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to us, the predictors used in this paper are similar to those in Rajeevan et al. (2004).  We are not awareof any evidence, such as a plot analogous to fig. 1, that shows the skill of the optimal powerregression model for all possible combination of predictors, and demonstrates that models with 17- 21parameters gives the best forecasts.   It would be quite easy for us to produce a figure analogous tofig. 1 for IMD predictions, but IMD, according to Rajeevan (personal communication), cannot maketheir data available to us.  The results of this paper also shed some light on the spatial structure of Indian monsoonrainfall predictability.  Western India appears to be the most predictable region, with dtrend andtindiamam, which are indices of Darwin pressure tendency and European surface temperature, beingthe dominant predictors in this region.  The importance of dtrend as a predictor of monsoon rainfall isconsistent with previous studies, most notably Shukla and Paolino (1983), which indicate a relationbetween monsoon rainfall and the tendency of Darwin prior to the monsoon season.  The importanceof teurodjf as a predictor also is consistent with previous studies which have suggested a link betweenmonsoon rainfall and snowfall in Europe (Bamzai and Shukla 1999).  Only limited regions in easternIndia appear to be predictable, with the predictor naojf (an index of the North Atlantic Oscillation)being the most common predictor in this region.  Although this result indicates a connection betweenmonsoon rainfall and variability in the North Atlantic Oscillation, the underlying mechanism isunclear.  Finally, the above results suggest that indices of the quasi-biennial oscillation, currently usedby the IMD (Rajeevan et al. 2004), are relatively useless predictors of monsoon rainfall.  
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Figure 1: The root mean square error (in cm) of cross validated forecasts of total JJAS Indianmonsoon rainfall in the period 1951-2002, based on all possible linear regression models formed fromthe ten predictors listed in sec. 2, as a function of the number of physical predictors.  The case of“zero” physical predictors corresponds to a constant term.  (The total number of predictors is one plusthe number of physical predictors.)  The dashed line indicates the standard deviation of total Indianmonsoon rainfall during this period.  
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Figure 2: The correlation (in percent) between cross validated forecasts and verification of theoptimum linear prediction model for JJAS monsoon rainfall in each subdivision during the period1951-2002.  The optimum prediction model is defined as the model with the minimum root meansquare cross validated error out of all possible models formed by the ten predictors defined in sec. 2. The optimum model is chosen in each subdivision independently of the others.  Subdivisions in whichthe correlation exceeds the 1% significance level are shaded in red.  Subdivisions which were not partof the analysis are shaded in grey.  
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Figure 3: Subdivisions in which the indicated predictors were chosen as part of the optimum linearprediction model of JJAS monsoon rainfall in that subdivision for the period 1951-2002. 
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subdiv subdiv rmse(cm) stdv(cm) corr EV(%) mean(cm) weight(%)NORTH ASSAM 1 18.0 17.7 0.06 -3.4 143.0 2.0SOUTH ASSAM 2 19.5 20.4 0.32 8.6 140.0 4.3SUB-HIMA. W . BENGAL 3 29.7 30.7 0.28 6.4 198.0 0.8GANGETIC W. BENGAL 4 17.2 18.4 0.38 12.6 117.0 2.3ORISSA 5 16.6 16.3 -1.00 -3.7 113.0 5.4BIHAR PLATEAU 6 17.3 17.5 0.22 2.3 108.0 2.8BIHAR PLAINS 7 18.2 18.9 0.29 7.3 101.0 3.3EAST UTTAR PRADESH 8 16.7 18.2 0.42 15.8 89.4 5.1W EST U.P. PLAINS 9 15.0 15.6 0.30 7.5 76.7 3.4HARYANA 10 12.8 13.9 0.44 15.2 49.2 1.6PUNJAB 11 15.3 17.3 0.50 21.8 54.8 1.7WEST RAJSTHAN 12 9.2 10.1 0.43 17.0 26.4 6.8EAST RAJSTHAN 13 14.0 15.3 0.41 16.3 61.7 5.1WEST MADHYA PRA. 14 15.5 16.3 0.35 9.6 90.1 8.1EAST MADHYA PRA. 15 19.4 19.6 0.25 2.0 112.0 7.8GUJRAT 16 26.9 27.4 0.22 3.6 84.2 3.0SAURASHTRA & KUTCH 17 19.3 19.5 0.22 2.0 43.0 3.8KONKAN AND GOA 18 38.7 44.3 0.50 23.7 247.0 1.2MADHYA MAHARASHTRA 19 9.8 10.5 0.39 12.9 57.6 4.0MARATHWADA 20 15.7 18.8 0.56 30.3 70.1 2.2VIDARBHA 21 16.5 17.9 0.38 15.0 91.6 3.4COASTAL ANDHRA PRA 22 12.0 12.2 0.26 3.3 53.2 3.2TELANGANA 23 15.4 17.4 0.49 21.7 73.8 4.0RAYALASEEMA 24 11.6 11.8 0.20 3.4 43.8 2.4TAMIL NADU 25 7.4 7.3 0.07 -2.2 31.1 4.5COASTAL KARNATAKA 26 48.2 50.3 0.33 8.2 294.0 0.6N. INT. KARNATAKA 27 10.5 11.7 0.46 19.5 61.0 2.8S. INT. KARNATAKA  28 9.8 9.9 0.18 1.8 51.0 3.2KERALA 29 34.7 34.6 0.17 -0.6 188.0 1.3ALL INDIA 30 7.8 8.5 0.41 16.4 84.1 100.0Table 1: The cross validated forecast skill of JJAS rainfall in each subdivision based on a leastsquares prediction using the optimal subset of predictors in the period 1951-2002.  Specifically, thetable gives the root mean square error (rmse), correlation skill (corr), and explained variance (EV;defined in (5)) of the statistical forecast, the standard deviation (stdv) and mean (mean) of JJASrainfall in each subdiv, and the fractional area coverage (weight) of each subdivision used to computeareal average rainfall in India.  Subdivisions with statistically significant correlation skill (corr !0.32)are in bold.  
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Table 2: List of Indian subdivisions and the specific predictors, indicated by an X in the appropriatetable entry, which give the optimum cross validated mean square error of JJAS rainfall in thatsubdivision for the period 1951-2002. 


