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ABSTRACT

This paper shows that if predictors are selected preferentially because of their strong correlation with a
prediction variable, then standard methods for validating prediction models derived from these predictors
will be biased. This bias is demonstrated by screening random numbers and showing that regression models
derived from these random numbers have apparent skill, in a cross-validation sense, even though the pre-
dictors cannot possibly have the slightest predictive usefulness. This result seemingly implies that random
numbers can give useful predictions, since the sample being predicted is separate from the sample used to
estimate the regression model. The resolution of this paradox is that, prior to cross validation, a// of the data
had been used to evaluate correlations for selecting predictors. This situation differs from real-time forecasts
in that the future sample is not available for screening. These results clarify the fallacy in assuming that if a
model performs well in cross-validation mode, then it will perform well in real-time forecasts. This bias appears
to afflict several forecast schemes that have been proposed in the literature, including operational forecasts of
Indian monsoon rainfall and number of Atlantic hurricanes. The cross-validated skill of these models probably
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would not be distinguishable from that of a no-skill model if prior screening were taken into account.

1. Introduction

A key issue in the construction of empirical forecast
models is whether the model can make useful predic-
tions of independent data—that is, data that were not
used to construct the model. If a model predicts the
available sample well but poorly predicts independent
samples, then the model is said to have large artificial
skill. Tt is generally recognized that two factors con-
tribute to artificial skill: 1) complexity of the model and
2) number of models considered. The first factor is well
appreciated by the seasonal forecasting community, as
forecasters often adopt selection criteria that penalize
complexity, such as cross validation, Akaike’s Infor-
mation Criterion, Bayesian Information Criterion, or
Mallow’s C,, (Barnston et al. 1994; DelSole and Shukla
2002; Kharin and Zwiers 2002). The second factor is
perhaps less widely appreciated but no less important.
The problem with considering a large number of models
is that eventually one model will be found to fit the
available data well, regardless, of its appropriateness.
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A more subtle source of artificial skill is the method
used to select predictors of a model. It is well estab-
lished that the seasonal mean climate in a region may
depend on sea surface temperatures (SSTs) in remote
locations around the globe (Shukla and Kinter 2006).
This fact implies that predictors for empirical seasonal
forecasts may be large-scale fields requiring potentially
thousands of variables to be specified. Choosing all
possible relevant variables implies high model com-
plexity and hence large artificial skill. To reduce artifi-
cial skill, the forecaster must be selective in the choice
of predictors. Ideally, the forecaster selects predictors
based on physical theory, perhaps guided by climate
modeling experiments. Unfortunately, constraints de-
rived from physical theory often do not reduce the pool
of predictors to reasonable levels. Another approach is
to approximate the predictors by a few parameters, such
as their leading principal components, which capture
maximum variance with the fewest components.

Another procedure for choosing predictors, which is
the focus of the present paper, is screening. Screening is
any procedure for choosing variables that preferentially
includes or excludes certain characteristics of the joint
relation between predictor and predictand. For instance,
a forecaster may start with 1000 variables, but then
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select the 10 most correlated variables with respect to
the predictand. An important fact, quantified by Davis
(1977) and Lanzante (1984), is that artificial skill arising
from screening is larger than artificial skill arising from
predictors chosen a priori (i.e., chosen by a nonscreening
method). The degree of artificial skill increases with the
number of predictors and pool of potential predictors
and decreases with increasing sample size and true skill
(Chelton 1983; Shapiro 1984; Shapiro and Chelton 1986).

The fact that screening also compounds artificial
skill was pointed out by Michaelson (1987) in his classic
paper on cross validation. Cross validation is the tech-
nique of setting aside a few observations, constructing
a model from the remaining sample, and testing the
model on the dataset aside, and then repeating this pro-
cedure by setting aside other observations in turn until
all observations have been used exactly once for testing.
Michaelson (1987) noted that, if predictors are selected
by screening, both the screening and model building
procedure must be cross validated. In this case, how-
ever, no single model is validated—the predictor set,
and hence the prediction model, changes with each
validation step; in essence, cross validation validates the
procedure, not the model. Michaelson (1987) used cross
validation to quantify the artificial skill in some model
building procedures for predicting winter SST's from fall
SSTs.

Despite its dangers, not all sample-based procedures
for selecting predictors are validated as a routine prac-
tice. For instance, a common procedure is to derive
prediction models from the leading principal compo-
nents of the data without validating the principal com-
ponents themselves (i.e., the principal components are
not recomputed in each validation step). This pro-
cedure is used, for example, to develop seasonal forecast
models from linear inverse models (LIM; Penland and
Magorian 1993), canonical correlation analysis (CCA;
Barnston and Smith 1996), and constructed analogs
(Van den Dool 2007). However, there exists a funda-
mental difference between selecting predictors based on
screening and selecting predictors based on the leading
principal components. Specifically, the former depends
on the joint relation between predictor and predictand,
whereas the latter does not. That is, the latter method
selects principal components because they explain
maximal variance, not because they are well correlated
with the predictand. While principal components do in
fact lead to biased estimates of variance in independent
data (Lawley 1956), this bias is distinct and presumably
uncoupled from artificial skill. Hence, selecting leading
principal components of predictor variables, in decreas-
ing order of variance, is not expected to cause the same
bias as selecting predictors based on screening.
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Although Davis (1977), Lanzante (1984), and Mi-
chaelson (1987) show that screening causes artificial
skill, they do not show that, if screening is performed on
all available data prior to validation, cross validation
leads to biased estimates of skill. The purpose of this
paper is to demonstrate this fact and to discuss the im-
plications of this fact for certain types of forecasts.

The fundamental problem with validating a model
after screening has been performed on all available data
can be illustrated with a simple example. Consider
predicting the variable y based on a predictor variable x
which is chosen from a very large pool of variables x,
X,. .. Xp, none of which really are related to y. While the
majority of predictor variables will have no relation to y,
a few predictor variables will have strong sample cor-
relations with y, simply by virtue of a large pool of
variables. Suppose a forecaster finds a predictor x that is
perfectly correlated with y; that is, the sample correla-
tion is one. A scatter diagram between x and y would
reveal all points lying on a line. Next, consider applying
leave-one-out cross validation to this dataset, in which
the sample is partitioned into two subsets, one for
constructing the model and the other for assessing the
model. No matter how the data are partitioned, a least
squares line fit based on any subset of points will per-
fectly predict the remaining points and thus appear to
have perfect cross-validation skill. This example shows
that if, prior to model construction, a predictor is se-
lected because of its high correlation, cross validation is
biased toward positive skill. The bias occurs because the
withheld data that is “left out™ in cross validation does
not constitute an independent draw from the joint dis-
tribution of y and x, since, prior to model construction,
all of the data had been used to find the x variable that
covaried with y.

The sample correlation need not be exactly one for
the above bias to occur—any nonzero correlation found
from screening will lead to bias in cross validation. To
demonstrate this bias, we perform a series of numerical
experiments in which a linear regression model for
predicting y is constructed from a set of predictors de-
rived from random numbers. Since the predictors are
random, we know that they cannot have the slightest
predictive usefulness. Nevertheless, proceeding as if the
random numbers are potentially useful predictors, we
generate a set of random time series x1(f) x5(¢). .. xp(t)
and compute the correlation between each time series
and y(¢). Even though x(¢) x5(¢) ... xp(t) are indepen-
dent random time series, the sample correlation be-
tween some of these time series and y(f) can be large,
just by chance. We then select the time series with the
largest absolute correlations, which we call the screened
predictors. We next perform cross validation, in which
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some time steps of the screened predictors are withheld
and a regression model is derived from the remaining
data. We show that the model still gives skillful pre-
dictions of the withheld sample. Since one of the pre-
diction variables is number of hurricanes, this result
seemingly implies that random numbers can predict the
number of hurricanes. The resolution of this paradox is
that, prior to withholding the sample, all of the data had
been used to find predictors that were well correlated
with the prediction variable.

The bias caused by screening predictors appears to
afflict several proposed forecasting schemes, including
one by the authors (DelSole and Shukla 2002). In the
latter study, the authors adopted predictors used in
previous studies without questioning how the predictors
were selected originally. Space limitations prevent us
from documenting all forecasts in which screening is a
potential cause of artificial skill. Consequently, we have
chosen to focus on seasonal forecasts of Indian mon-
soon rainfall and the number of Atlantic hurricanes, as
documented by Rajeevan et al. (2007) and Klotzbach
and Gray (2004), respectively, because these forecasts
are issued regularly and utilized by a large community.
We show that the cross validated skill of these models
are consistent with that of a no-skill model if screening
were taken into account.

In the next section, we review particular forecast
schemes in which screening plays a fundamental role.
We describe our methodology for quantifying the effect
of screening in section 3, and discuss the results in sec-
tion 4. We conclude with a summary and discussion of
our results.

2. Forecasts of Indian monsoon rainfall and
number of hurricanes

We consider forecasts produced by the Colorado
State University Tropical Meteorology Project (CSUTMP).
Although CSUTMP predicts several hurricane-related
quantities, the number of Atlantic hurricanes (NH) was
chosen for analysis because of its wide interest. As
discussed by Klotzbach and Gray (2004), the predictors
of this model are derived from the National Centers for
Environmental Prediction—National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis by con-
structing composite maps of the August and September
mean sea surface temperature, sea level pressure, and
zonal velocity at 200, 850, and 1000 hPa, based on the 10
highest and 10 lowest years of Net Tropical Cyclone
(NTC) activity. Areas with large correlations are boxed,
provided the boxes span at least 10° longitude and 20°
latitude. The field within the box is then averaged to
construct a predictor time series. A similar procedure is
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applied to correlation maps between NTC and the same
monthly mean fields and to correlation maps between
NTC and forecast residuals based on one or two pre-
dictors. The resulting predictors are examined to ensure
that the partial correlation of each predictor exceeds the
10% significance level, that the predictor is not strongly
correlated with other predictors, and that the correla-
tion with NTC does not drop too much if the data is
subdivided.

We also consider forecasts of the Indian June-—
September Mean Rainfall (ISMR) produced by the
Indian Meteorological Department (IMD). The method
used by the IMD to choose predictors has not been
documented—(Gowariker et al. 1989, 1991), Thapliyal
and Kulshrestha (1992), and Rajeevan et al. (2007)
merely state the predictors. We have received the
following description about the IMD methodology
(M. Rajeevan 2007, personal communication). First,
correlation maps between ISMR and selected variables
from the NCEP-NCAR reanalysis and SST data are
computed. Then, boxes with correlations exceeding the
5% significance level are identified. The variable is av-
eraged over the box to derive a time series. The re-
sulting time series are then examined to ensure that
“running”’ 21-yr correlations remain high, that a plau-
sible physical connection exists between the time series
and ISMR, that the difference in mean values between
the largest and smallest ISMR values are statistically
significant, and that the high correlations are not due to
a few anomalous years.

In the following, we call both forecasts ““operational.”
In addition, we consider only forecasts issued in May or
June, prior to the onset of the seasonal phenomena.
Although forecasts by the IMD and CSUTMP are pub-
licly available, the predictors used to construct the fore-
casts are not. Predictors of ISMR were provided by
M. Rajeevan of the IMD, and predictors of number of
Atlantic hurricanes were provided by P. Klotzbach of
the CSUTMP.

Both operational forecasts share a common step:
prior to model construction, a large dataset is searched
for variables that are strongly related to the predictand.
The precise details of the selection criteria differ be-
tween the two forecasts, but overall the criteria are
designed to select variables that covary with the pre-
dictand. For instance, in both schemes, the predictor
must maintain some fraction of its correlation when the
data is subdivided. While the ultimate selection criteria
may be more stringent than simply finding correlated
time series, the extra stringency does not change the fact
that screening is still being performed. The stronger the
covariability, the more likely a variable will be selected.
For sufficiently large pool of predictors, an arbitrarily
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large number of predictors will be selected, even if there
is no real relation.

Since the precise model building procedures em-
ployed at the IMD and CSUTMP are under constant
development, the above descriptions are likely to be
obsolete by the time this paper is published. Indeed,
while this paper was under review, Klotzbach (2007)
developed a refined model building procedure using
1949-89 data for training and 190048 and 1990-2005
data for testing. We argue that the precise procedure is
not important. Rather, the critical feature that com-
pounds artificial skill is that predictors are selected by
screening all data prior to model validation. The new
scheme proposed by Klotzbach (2007) does not use all
data for screening, and therefore may not be subject to
the bias discussed here.

An important question is how many independent
time series are examined in the above procedures. This
number is not simply the number of grid points in a
dataset, since neighboring grid points are correlated
and hence do not constitute independent degrees of
freedom. Stefanick (1981), North et al. (1982), and
Bretherton et al. (1999) argue that a rational estimate of
the effective number of degrees of freedom in a time
varying field depends on the length scale L;:

%

L= /p(r) dr, ()

0

where p(r) is the spatial autocorrelation function (i.e., the
correlation between a point and all points a distance r
from it). This measure tends to underestimate the length
scale of oscillatory autocorrelations, since the oscillations
cancel in the integral. DelSole (2001) suggested an al-
ternative measure in time series analysis, which in the
spatial domain would be

]

L,=2 / p?(r)dr. 2)

0

This measure avoids the cancellation problem and
moreover is consistent with the L; measure for expo-
nential autocorrelation functions. We use the L, mea-
sure in this paper.

We compute the effective number of spatial degrees
of freedom by dividing the total area of the domain by
the area of a circle with radius L,. The spatial auto-
correlation function for several April mean fields were
estimated from the NCEP-NCAR reanalysis during
the period 1948-2007; some examples are shown in Fig. 1.
April averages were chosen because these fields are
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known immediately prior to monsoon or hurricane
season. Since previous studies noted a difference in
length scales between tropics and midlatitudes, the au-
tocorrelations are computed separately for variables
within 30° of the equator (the “‘tropics’), and elsewhere
(the “midlatitudes”). Table 1 shows the corresponding
length scales. We see that monthly mean wind variables
tend to have short length scales (around 1200 km), while
geopotential, temperature, and pressure tend to have
large length scales (2000-4000 km). We have computed
length scales from both formulas and found that L, >
Ly in all cases, so the use of (2), if anything, underesti-
mates the number of degrees of freedom. If we add up
all the degrees of freedom for all the variables examined
by Klotzbach and Gray (2003), then the total number of
degrees of freedom is 434. However, different variables
within a local region may be correlated, so adding de-
grees of freedom may not be sensible. If only 1000-hPa
zonal wind is considered, then the total number of de-
grees of freedom exceeds 200. Accordingly, we choose
the conservative value of 200 and examine the impli-
cations of searching for predictors in a 200-variable
dataset.

3. Methodology

We perform numerical experiments in which a linear
regression model is constructed from random varia-
bles. The variable we want to predict, y,,n =1,2,..., N,
is called the predictand, and the variables on which the
prediction is based are called the predictors. Two dis-
tinct predictand data are considered: 1) observed
June—September rainfall over India in each year (data
provided by M. Rajeevan of the IMD), and 2) total
number of Atlantic hurricanes in each year (down-
loaded from http://www.aoml.noaa.gov/hrd/hurdat/
Data_Storm.html).

The predictors are generated by first drawing N
random numbers independently from a Gaussian dis-
tribution with zero mean and unit variance. These
numbers define a time series for a single predictor. This
procedure is repeated P times. The resulting P vectors,
each of length N, are called “‘predictors” even though
they are random numbers. Next, the sample corre-
lation between each predictor and predictand is
computed, yielding P correlations. Then, the S =P
predictors with largest absolute correlation are se-
lected. These predictors will be called screened pre-
dictors. This screening procedure differs from that used
by CSUTMP and IMD in that our procedure relies
exclusively on correlations without regard to spatial
coherence or other properties of the time series. Nev-
ertheless, these experiments are argued to be relevant
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FIG. 1. Spatial autocorrelation of April mean fields estimated from the NCEP-NCAR reanalysis fields
during the period 1948-2007. The fields are tabulated in Table 1 and denoted in the obvious way: (top)

tropics and (bottom) midlatitudes.

because the precise screening procedure is not essential,
rather it is the fact that screening is performed on the
same dataset that is used to validate the model. Other
screening procedures that approximate the operational
screening procedures more closely will be considered at
the end of the next section.

Having constructed random predictors, we next at-
tempt to make a forecast of the predictand based on

the random predictors. For this purpose, we assume,
knowing full well that this is not the case, that the pre-
dictand and predictors are related linearly as

y = XB+w, 3)
where y is an N-dimensional vector specifying the pre-
dictand values, the rows of X give the predictor values
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TABLE 1. Length scale and effective number of spatial degrees
of freedom (dof) for April mean fields selected from the NCEP-
NCAR reanalysis. The calculation of the length scale and degrees
of freedom are described at the end of section 2.

Midlatitude Tropics

Length Length Total
Variable (km) Dof (km) Dof dof
500-hPa geopotential height 1900 22 3800 6 28
200-hPa geopotential height 2200 17 4200 5 21
Mean sea level pressure 2100 18 2900 10 28
850-hP temperature 1600 32 2700 11 43
200-hPa zonal wind 1200 56 1500 36 92
1000-hPa zonal wind 800 127 1000 81 208
200-hPa meridional wind 1300 48 1500 36 84
Total dof 321 184 505

corresponding to each element of y, B is a K-dimen-
sional vector containing unknown regression parame-
ters, and w is an N-dimensional random vector. The
constant term is included by inserting a predictor whose
value is always unity. Thus, except for a single column,
all elements of X are random numbers. The least
squares estimate of the regression parameters is

B = (X"X)"' Xy, “4)

where superscript T denotes the transpose operation.
The least squares estimate of the predictand y, given the
observed values of the predictors X, is

¥ = XB. (5)
The final set of predictors used in the prediction model
is determined by a model selection procedure. We
consider only model selection procedures that use
leave-one-out cross validation. In cross validation, one
sample is withheld and the remaining samples are used
to compute the least squares model. The resulting
model then is used to predict the withheld sample.
Repeating this procedure until each sample has been
used exactly once as verification yields a set of forecast-
verification pairs from which the sum square error can
be computed. Importantly, the sum square error of
leave-one-out cross validation can be computed without
explicitly solving for the regression parameters in each
stage of cross validation. The final result for the cross-
validated sum square error (CVSSE) is given in Stone
[1974, his (3.13)], which in our notation is

(y—XB);
1= X(X"X)"' X"

CVSSE= > (6)

This formula reduces the number of calculations by
more than an order of magnitude compared to explicit
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cross validation, which frees computational resources
for more Monte Carlo samples. We typically report the
square root of CVSSE, which we call the cross-validated
(CV) standard error.

Two model selection procedures are considered in
this paper: all possible combinations and stepwise re-
gression. As the name suggests, the former method in-
volves computing the cross-validated sum square error
of all possible combinations of predictors and then
choosing the combination that yields the smallest of
these errors. In stepwise regression, we first choose the
single predictor that minimizes the cross-validated sum
square error and then subsequently add other predic-
tors, one at a time, depending on whether it reduces the
cross-validated sum square error. At each stage, the
predictor that yields the greatest reduction in cross-
validated sum square error is chosen. If no predictor in
the set reduces the error, then the procedure halts and
the resulting set of predictors are used to make fore-
casts. This form of stepwise regression differs from other
standard forms in two ways: the criterion for accepting
a predictor in the model is based on cross validation
rather than an F-type significance test, and no predictor
is removed from the model once it is selected, (i.e., we
use “forward selection” with no ‘‘backward removal”).
This modified version of stepwise regression was chosen
because we want to emphasize difficulties with cross
validation, which may seem counterintuitive to some
readers.

4. Results

Our first goal is to illustrate the bias due to searching
large datasets, so the exact parameter choices for these
experiments are not critical. Accordingly, we generate
predictors by selecting the 10 random time series having
largest absolute correlation with ISMR during the 30-yr
period 1969-98, chosen from a pool of P = 10, 50, and
200 random time series. Figure 2 shows the cross-vali-
dated standard error of ISMR regression models
formed from all possible subsets of the 10 screened
predictors. The maximum and minimum correlations
are given in parentheses in the figure. The top panel
shows results for P = 10 and S = 10, which implies that
no screening has been performed—10 random time se-
ries were generated and then selected. The model with
minimum cross-validated standard error has 4 predic-
tors. Since none of the models have genuine skill (because
the predictors are random numbers), the 4-predictor
model is the wrong choice. Note, however, that the
minimum value is close to the error using 0 predictors
and close to the standard error of ISMR. These results
suggest a need to supplement the standard criterion in
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FIG. 2. Cross-validated standard error of regression models formed from all possible
combinations of screened predictors. The screened predictors are the top 10 time series
having the largest correlations with the predictand found from a total of P random time series,
where the value of P is indicated in each panel: P (top) = 10, (middle) = 50, and (bottom) =
200. The predictand is the ISMR during the 30-yr period 1969-98. The number in parentheses
in each panel gives the maximum and minimum correlation from the top 10 screened random
time series. The dashed line in each panel indicates the standard deviation of the predictand
during the period 1969-98.

—
\®)
® ]

0 e]
|

Cross Validated Standard Error

—
(\o
]

o0
|
®

337

cross validation by an additional criterion that checks
whether the improvement due to adding a predictor is
sufficiently large, a point also emphasized by DelSole
(2007). The Monte Carlo technique used here may
provide a quantitative basis for such a check.

Now consider a pool of predictors of size P = 50, but
only the 10 time series with largest absolute correlations
with ISMR are selected. The cross-validated error of
all possible subsets of these S = 10 time series is shown
in the middle panel of Fig. 2. First, the minimum
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FIG. 3. (top) CV standard error of ISMR forecasts using the actual predictors of the May 2006
IMD operational forecast, and (bottom) a regression model derived from the 6 out of 200
random time series that are most correlated with ISMR. The numbers in parentheses give the
minimum and maximum correlations between the six predictors and ISMR. The horizontal
dashed line gives the standard deviation of ISMR during the period 1981-2004. The dotted
curve gives the 5% significance threshold when screening is taken into account.

correlation of the screened predictors has risen by at
least a factor of 10 relative to the case P = 10. This
increase occurs in all experiments, though the exact
factor is sample dependent. Second, the cross-validated
error decreases with the number of predictors, reaching
a minimum at 6 predictors. Increasing the original pool
of predictors to P = 200 (bottom panel) leads to even
lower cross-validated errors. This example shows that a
model may have apparent skill in a cross-validation
sense, even though the predictors cannot possibly have
the slightest predictive usefulness.

It is instructive to compare the errors of forecasts
based on random predictors with errors based on the
actual predictors used in the operational forecast. At
the time of this writing, the most recent forecast period
was 2006. The IMD provided us with the six predictor
time series they used to construct the May 2006 ISMR
forecast. Similarly, the CSUTMP provided us with the
six predictor time series they used to construct the April
2006 NH forecasts. In both cases, the forecasts are based
on six predictors. Accordingly, we modify the above
screening procedure to select at most six predictors
from the large pool. We perform Monte Carlo simula-
tions for the two predictands separately, using the ap-
propriate time series length (the 2006 CSUTMP forecasts
were trained on 1950-2005, while the 2006 IMD fore-

casts were trained on 1981-2005). The cross-validated
errors of forecasts derived from the actual predictors,
and based on a realization of the six most correlated
time series out of P = 200 random time series, are
shown in Figs. 3 and 4 . The dotted curve shows the 5%
significance level for the minimum CV standard error as
a function of the number of predictors, as determined by
1000 Monte Carlo simulations. We see that the errors lie
almost completely above the dotted line, indicating that
the no-skill hypothesis cannot be rejected based only on
the observed degree of cross-validated skill. (If the 1%
significance level were used, the dotted curve would
extend below the panel boundary and all data points
would lie above the significance curve, indicating lack of
statistical significance.)

To construct the bottom panels of Figs. 3 and 4, only a
few realizations of random time series were explored.
Results for other realizations are surprisingly similar.
This robustness is a consequence of random sampling
from large datasets. To see this, let p. be the 100a %
significance level of a correlation derived from N inde-
pendent, normally distributed random variables. By
definition, then, the probability that a single random
time series has a correlation exceeding p, is «. However,
the probability that at least one correlation out of P
exceeds p, is
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FIG. 4. (top) CV standard error of number of Atlantic hurricane (NH) forecasts using the
actual predictors of the April 2006 CSUTMP operational forecast, and (bottom) a regression
model derived from the 6 out of 200 random time series that are most correlated with NH. The
numbers in parentheses give the minimum and maximum correlations between the six pre-
dictors and NH. The horizontal dashed line gives the standard deviation of NH during the
period 1950-2001. The dotted curve gives the 5% significance threshold when screening is taken

into account.

prob=1— (1 —a)”. (9)

To put this formula in perspective, consider 100 time se-
ries, each of length 30 (as in the experiment on which
Fig. 2 is based). The associated 5% significance threshold
for the correlation coefficient is 0.34. Thus, about 5 out of
100 correlation coefficients are expected to exceed 0.34.
However, the probability of finding at least one cor-
relation coefficient exceeding 0.34 in a pool of 100 is
1 — (0.95)' =~ 99.4%. Thus, a 5% rare event becomes a
virtual certainty if just 100 time series are examined. More
generally, if we search a large dataset, several time series
with large correlations will inevitably be found. If we
consider a new realization of time series, then while the
actual numbers change, the upper range of correlations
will be similar, in which case the best regression model
derived from these time series will have similar skill.

Let us now consider results based on stepwise re-
gression. Since this procedure is less demanding com-
putationally, more realizations can be considered.
Accordingly, we follow the previous procedure and
generate P random time series of length N = 30, and
then select the subset with the 10 largest absolute cor-
relations with the predictand. We then repeat this pro-
cedure 1000 times, from which the median, upper and

lower quartile, and 5% and 95% percentiles can be
computed and displayed as ‘“‘box-and-whisker’ plots.
The results are plotted in the bottom panels of Fig. 5.
The cross-validated error decreases initially and reaches
a minimum at 5 predictors, consistent with the results
for all-possible-subsets regression. The top figure shows
that the most frequent number of predictors chosen by
stepwise regression is 5. Nevertheless, the selected
models utilize random predictors and therefore cannot
possibly have skill.

The results presented above do not prove that the
skill of operational forecasts by the IMD and CSUTMP
are consistent with a no-skill model because the screen-
ing procedures used in the different forecasts differ.
Unfortunately, the different screening procedures have
not been documented in sufficient detail to allow inde-
pendent forecasters to discover the predictors exactly.
For instance, the screening procedures involve a sub-
jective component in which the physical plausibility of
the predictor is assessed, the outcome of which differs
from forecaster to forecaster. An alternative assessment
is to measure the skill of real-time forecasts (i.e., fore-
casts issued before the verification becomes available).
We show in Fig. 6 the standard error of three distinct
forecasts over the period 1999-2007, the predictands of
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FIG. 5. Statistics of stepwise regression for predicting ISMR when applied to the top 10 out of
200 random time series having the largest absolute correlation with ISMR. (top) The number of
cases in which stepwise regression chose a specific number of predictors; (bottom) box-and-
whisker plots of the cross-validated standard error for each number of predictors. The box-and-
whisker plots show the median as the centerline in the rectangle, the first and last quartile as the
ends of the rectangle, and the 5% and 95% value as the ends of the error bars. The statistics

were compiled from 1000 iterations.

which are tabulated in Tables 2 and 3: 1) a forecast
based on the climatological means of the 15, 16, ..., 30
yr preceding 1999, 2) the operational forecasts, and 3)
forecasts by models with screened random predictors as
selected by stepwise regression (without using the 1999—
2007 data). Since the last forecasts are random we show
box-and-whisker plots of the errors. The figure shows
that the IMD forecasts are comparable to the lower
quartile of the forecasts based on random predictors.

Importantly, the IMD forecast does not perform better
than forecasts based on the antecedent climatological
means. The lack of real-time skill of the IMD models
supports the hypothesis that the screening procedures
used in operational forecasts have identified spurious
relations.

In contrast to the IMD forecasts, the CSUTMP
forecasts have significantly less mean square error than
forecasts based on either the prior climatology or
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FIG. 6. (left) Standard error of three classes of forecast models applied to ISMR and (right)
number of hurricanes during the period 1999-2007. ““CLIM” refers to a forecast based on the
climatology of the preceding data, from 15 to 30 yr; “‘Operational” refers to the. forecast issued
by the IMD (left) and the CSUTMP (right); ““‘Random” refers to the forecasts generated by the
models with random predictors selected by the stepwise regression procedure, using the pre-
dictand only from the preceding 30 yr and whose statistics are illustrated in Fig. 5. The box-and-
whisker plots show the median as the centerline in the rectangle, the first and last quartile as the
ends of the rectangle, and the 5% and 95% value as the ends of the error bars.

random predictors. However, since the correlation skill
during this period is small (i.e., 0.08), the reduced mean
square error presumably arises from accurate predic-
tions of the 1999-2007 mean. Specifically, the mean
CSUTMP forecast during this period is 8.0, compared to
the observed value of 7.7, whereas the observed mean in
the 30 yr preceding 1999 is 5.5. The difference in means
leads to poor mean square errors for the climatological
forecast, but has no impact on correlation skill.

TABLE 2. Observed and forecasted Indian monsoon rainfall for
the period June-September in units of percent of the 1941-90
mean (i.e., % of 89 cm). Also given are the corresponding mean,
standard deviations, standard error of the forecast (stdv err),
standard error of a forecast based on the prior 1970-95 mean (stdv
clim), and the correlation between the forecast and observation
(corr).

To investigate the sensitivity of our results to
screening criteria, we consider alternative screening
procedures. In all cases, the first step is to order all P
time series by decreasing absolute correlation with
respect to the predictand. In the first procedure, we
select the first S time series whose correlations exceed
the 10% significance level; thus, this method may
produce less than S time series, whereas previously we
selected the time series with the leading S correlations,

TABLE 3. Observed and forecasted number of Atlantic hurri-
canes for the period 1999-2007, as forecasted by the CSU Tropical
Meteorological Project in late May—early June. Also given are the
corresponding means, standard deviations, standard error of the
forecast (stdv err), standard error of a forecast based on the 1969—
98 mean (stdv clim), and the correlation between the forecast and
observation (corr).

ISMR Number of hurricanes
Year Obs Forecast Year Obs Forecast
1999 —4.4 8 1999 8 9
2000 -7.8 -1 2000 8 8
2001 -9 -2 2001 9 7
2002 —-19.2 1 2002 4 6
2003 2 -2 2003 7 8
2004 —13 0 2004 9 8
2005 -1 -2 2005 15 8
2006 0 -7 2006 5 9
2007 5 -5 2007 4 9
Mean -5.27 —-1.11 Mean 7.67 8.00
Stdv 73 3.96 Stdv 32 0.94
Stdv err 10.5 Stdv err 3.07
Stdv clim 8.8 Stdv clim 3.75
Corr —0.42 Corr 0.08
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regardless of value. In the second procedure, we split
the data in half and select the S time series whose
correlations in both halves of the data maintain at least
90% of the original correlation. In the third, we split
the data in half and select only the § time series whose
correlations in both halves remain statistically signifi-
cant at the 10% level with respect to the original time
series. The results, shown in Fig. 7, are similar to each
other and similar to the results shown Figs. 24, indi-
cating that the bias is not sensitive to the precise
screening procedure.

The sensitivity of the results to the total number of
time series P, length of the time series N, and the number
of screened predictors S is indicated in Table 4. In gen-
eral, we find that the total number of predictors selected
by stepwise regression is more strongly related to S than
to N or P. Indeed, the number of screened predictors
selected by stepwise regression is fairly well approxi-
mated by S/2 *+ 2, for the range of parameters examined.

S. Summary and discussion

Screening is the process of preferentially selecting a
variable because of its strong covariability with the
predictand. This paper demonstrates that if screening is
not taken into account, then cross-validation methods
overestimate forecast skill. This bias was illustrated by
showing that if predictors are drawn from a large pool of
random numbers by selecting only those that are strongly
correlated with the predictand, then forecast models
derived from the resulting predictors have substantial
cross-validated skill. This result may seem surprising
since, in cross validation, the data used to derive pa-
rameters in a regression model is separate from the data
used to validate the model. Thus, without accounting for
screening, this result seemingly implies that random
numbers can provide useful forecasts of independent
data. The resolution of this paradox is that, prior to cross
validation, all the data had been used for screening. This
bias does not afflict real-time forecasts since future data
is not available for screening.

Several screening procedures have been proposed in
the literature. A common part of these schemes is the
identification of predictors from correlation maps. In
the context of seasonal forecasts, the effective number
of spatial degrees of freedom of monthly mean fields, as
estimated from the spatial autocorrelation function, is
about 30 for nonwind variables and 100-200 for wind
variables. Thus, the total number of independent sam-
ples that are represented in the correlation maps is at
least a few hundred. This result also implies that wind
variables are more likely to be selected than nonwind
variables, owing to their shorter length scales and hence
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their greater effective number in a global field [this may
explain why 6 out of 7 predictors identified in Klotzbach
and Gray (2003) are wind variables, and why 1000-mb
zonal velocity, which has the smallest length scale in the
set, is the single most prevalent predictor in the set].

This paper suggests that predictor screening has not
been accounted for in the validation of some seasonal
forecasts. We have focused specifically on the forecasts
by the IMD and CSUTMP because they are operational
and used by a large community, but we stress that many
other schemes can be found in the literature that are
problematic for the same reasons. In these forecasts,
screening is not included in the cross validation, and the
cross-validated errors are comparable to the errors ex-
pected from screening random numbers. Therefore, the
skill of these models is consistent with a no-skill model
after screening has been taken into account.

It is possible to argue that mean square error is not a
good choice of skill measure, perhaps because it pe-
nalizes forecasts that have the correct correlation but
incorrect amplitude. However, regression models spe-
cifically optimize mean square error, so it is appropriate
to validate regression models using the same measure
that they are designed to optimize. Nevertheless, al-
ternative skill metrics also indicate no skill; for example,
the correlation between observations and predictions
over the past decade is negative for each set of forecasts
(see Tables 2 and 3).

A characteristic feature of forecasts by the IMD and
CSUTMP is that the predictors change with time. For
instance, none of the predictors used by the IMD in
2007 were used by the IMD during 1988-2002. Simi-
larly, only one predictor used by the CSUTMP in April
2007 was used in the April 1999 forecast model (namely,
the February SST near the European coast). This ap-
parent need to change predictors is an expected conse-
quence of screening: screened predictors, being biased
in the available sample, lose some or all predictive use-
fulness in independent data. It is sometimes argued that
predictors must change with time because the climate
system is nonstationary (Rajeevan et al. 2007). However,
this hypothesis contradicts the basis of statistical pre-
diction, namely that relations identified in the past will
persist into the future. Forecasts based on nonscreening
methods, such as those based on LIM or CCA, explicitly
assume stationarity and seem to maintain skill as the
models are updated with independent data. Also, if the
system is nonstationary, then the relation between var-
iables should not only degrade with time, but also should
occasionally increase. To our knowledge, the predictive
power of a screened predictor never increases in a sta-
tistically significant sense after the predictor has been
defined.
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Jagannathan (1960) documents each regression tion is how this interval compares with the interval re-

model used by the IMD each year during the 67-yr pe-
riod 1886-1960 (see his appendix 3). From this list, we
find that the median time that a predictor remained in
the IMD operational forecast is 10 yr. A natural ques-

quired to decide that a screened predictor is useless for
independent predictions. While several methods sug-
gest themselves, a point of reference is the following.
Consider repeatedly generating N independent random
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TABLE 4. The most likely number of screened predictors chosen
by stepwise regression, when the predictors are chosen from a pool
of P random time series of length N, and the leading S time series
with maximum absolute correlation with ISMR are selected for the
screened predictors. The “most likely” number of predictors is the
most frequently chosen number from 1000 Monte Carlo experi-
ments.

Most likely number

N P S of predictors
26 100 5 3
26 500 5 5
26 100 10 5
26 200 10 5
26 500 10 5
26 1000 10 5
26 100 15 6
26 200 15 7
26 500 15 7
26 100 20 8
26 200 20 9
26 500 20 8
45 100 5 5
45 500 5 5
45 100 10 6
45 200 10 6
45 500 10 6
45 1000 10 7
45 100 15 8
45 200 15 8
45 500 15 8
45 100 20 9
45 200 20 10
45 500 20 10
45 500 30 14

pairs until the sample correlation exceeds the 5% sig-
nificance level, and then monitoring the correlation as
additional independent data are concatenated onto the
original time series. This monitoring mimics a reason-
able procedure a forecaster might follow after identi-
fying a predictor. Monte Carlo simulations reveal that
the average number of independent samples that can be
added before the correlation drops below the original
significance level is almost exactly a linear function of
the original sample size N, with the average number
being 7 for N = 20, and 11 for N = 30. Thus, the ob-
served 10-yr interval for a predictor to remain in oper-
ational forecasts is consistent with the interval needed
to reject a useless screened predictor identified origi-
nally in 20-30 samples.

Our conclusion that the cross-validated skill of oper-
ational models is consistent with a no-skill model, if
screening is taken into account, implies that the opera-
tional forecasts should have no skill. This appears to be
the case for the IMD forecasts: Montgomery (1940)
showed that the forecasts by the IMD had no skill from
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the period 1921-35, and Gadgil et al. (2005) found that
the correlation skill of the IMD forecasts during the
period 1934-2004 was statistically insignificant. Earlier,
Walker (1922) found that a regression equation derived
in 1908 and used during the period 1909-21 had a cor-
relation skill of 0.55, which is only marginally significant
at the 5% level. It is interesting to note that Walker
(1914) clearly recognized the problems due to screening
and compensated for them by choosing a more stringent
significance level.

The mean square error of CSUTMP forecasts since
1999 are substantially less than those based on clima-
tology or random predictors. However, the correlation
skill of these forecasts is small (i.e., 0.08), suggesting
that the reduced mean square error arises primarily
from accurately predicting the 1999-2007 mean. Ascer-
taining the reasons for why the regression models
trained on past data accurately predicted that the 1999—
2007 mean would be higher than the previous 30 yr is
difficult because the specific forecast models used by
CSUTMP change from year to year and the regression
forecasts are subjectively adjusted before final issuance
(P. Klotzbach 2007, personal communication). Never-
theless, our conclusion that the cross-validated skill
itself is consistent with a no-skill model still holds.

Since screening compounds artificial skill, alternative
methods of selecting predictors need to be developed.
In the introduction, we mentioned some alternatives,
including constraining the predictors based on physical
theory or explained variance. Also, objectively defined
screening procedures can be included in nested cross-
validation procedures. Some novel methods for identi-
fying predictive relations in large datasets have been
developed by the statistics community, especially in
data mining and machine learning (see Hastie et al.
2001), and their application to statistical climate pre-
diction are worth investigating. It should be recognized,
however, that artificial skill can intrude in subtle ways
that even the most conscientious forecaster may fail to
recognize. For instance, suppose a forecaster properly
includes the screening procedure in cross validation and
discovers that the prediction procedure is not skillful.
The forecaster may then be tempted to modify the
model construction procedure until the cross-validation
procedure indicates skill. However, this approach con-
stitutes screening in disguise, since, in effect, the “in-
dependent” samples are used to select the final model
building procedure. The most satisfactory demonstra-
tion of skill is that based on real-time forecasts in which
the predicted future event is completely unavailable at
the time at which the forecast is issued.

Although this paper has focused on statistical pre-
diction models, the results of this paper also have
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implications for dynamical prediction models. Specifi-
cally, the process of “model development,” which in-
volves tuning and choosing parameterizations, can be
interpreted as selecting one model out of a large set of
models. If the selection criteria are based on how well
the model predicts past events, model development ef-
fectively becomes a screening method and the bias
discussed here becomes a significant problem with val-
idating dynamical models.
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